skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bias‐Eliminating Techniques in the Computation of Power Spectra for Characterizing Gravity Waves: Interleaved Methods and Error Analyses
Abstract Observational data inherently contain noise which manifests as uncertainties in the measured parameters and creates positive biases or noise floors in second‐order products like variances, fluxes, and spectra. Historical methods estimate and subsequently subtract noise floors, but struggle with accuracy. Gardner and Chu (2020,doi.org/10.1364/AO.400375) proposed an interleaved data processing method, which inherently eliminates biases from variances and fluxes, and suggested that the method could also eliminate noise floors of power spectra. We investigate the interleaved method for spectral analysis of atmospheric waves through theoretical studies, forward modeling, and demonstration with lidar data. Our work shows that calculating the cross‐power spectral density (CPSD) from two interleaved subsamples does reduce the spectral noise floor significantly. However, only the Co‐PSD (the real part of CPSD) eliminates the noise floor completely, while taking the absolute magnitude of CPSD adds a reduced noise floor back to the spectrum when the sample number is finite. This reduced noise floor can be further minimized through averaging over more observations, completely different from traditional spectrum calculations whose noise floor cannot be reduced by incorporating more samples. We demonstrate the first application of the interleaved method to spectral data, successfully eliminating the noise floor using the Co‐PSD in a forward model and in lidar observations of the vertical wavenumber of gravity waves at McMurdo, Antarctica. This high accuracy is gained by sacrificing precision due to photon‐count splitting, requiring additional observations to counter this effect. We provide quantitative assessment of accuracy and precision as well as application recommendations.  more » « less
Award ID(s):
2110428 2029162
PAR ID:
10585298
Author(s) / Creator(s):
;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Earth and Space Science
Volume:
11
Issue:
10
ISSN:
2333-5084
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Random‐noise‐induced biases are inherent issues to the accurate derivation of second‐order statistical parameters (e.g., variances, fluxes, energy densities, and power spectra) from lidar and radar measurements. We demonstrate here for the first time an altitude‐interleaved method for eliminating such biases, following the original proposals by Gardner and Chu (2020,https://doi.org/10.1364/ao.400375) who demonstrated a time‐interleaved method. Interleaving in altitude bins provides two statistically independent samples over the same time period and nearly the same altitude range, thus enabling the replacement of variances that include the noise‐induced biases with covariances that are intrinsically free of such biases. Comparing the interleaved method with previous variance subtraction (VS) and spectral proportion (SP) methods using gravity wave potential energy density calculated from Antarctic lidar data and from a forward model, this study finds the accuracy and precision of each method differing in various conditions, each with its own strengths and weakness. VS performs well in high‐SNR, yet its accuracy fails at lower‐SNR as it often yields negative values. SP is accurate and precise under high‐SNR, remaining accurate in worse conditions than VS would, yet develops a positive bias under low‐SNR. The interleaved method is accurate in all SNRs but requires a large number of samples to drive random‐noise terms in covariances toward zero and to compensate for the reduced precision due to the splitting of return signals. Therefore, selecting the proper bias removal/elimination method for actual signal and sample conditions is crucial in utilizing lidar/radar data, as neglecting this can conceal trends or overstate atmospheric variability. 
    more » « less
  2. The precision of lidar measurements is limited by noise associated with the optical detection process. Photon noise also introduces biases in the second-order statistics of the data, such as the variances and fluxes of the measured temperature, wind, and species variations, and establishes noise floors in the computed fluctuation spectra. When the signal-to-noise ratio is low, these biases and noise floors can completely obscure the atmospheric processes being observed. We describe a novel data processing technique for eliminating the biases and noise floors. The technique involves acquiring two statistically independent datasets, covering the same altitude range and time period, from which the various second-order statistics are computed. The efficacy of the technique is demonstrated using Na Doppler lidar observations of temperature in the upper mesosphere and lower thermosphere acquired recently at McMurdo Station, Antarctica. The results show that this new technique enables observations of key atmospheric parameters in regions where the signal-to-noise ratio is far too low to apply conventional processing approaches. 
    more » « less
  3. Abstract Wave breaking induced bubbles contribute a significant part of air‐sea gas fluxes. Recent modeling of the sea state dependent CO2flux found that bubbles contribute up to ∼40% of the total CO2air‐sea fluxes (Reichl & Deike, 2020,https://doi.org/10.1029/2020gl087267). In this study, we implement the sea state dependent bubble gas transfer formulation of Deike and Melville (2018,https://doi.org/10.1029/2018gl078758) into a spectral wave model (WAVEWATCH III) incorporating the spectral modeling of the wave breaking distribution from Romero (2019,https://doi.org/10.1029/2019gl083408). We evaluate the accuracy of the sea state dependent gas transfer parameterization against available measurements of CO2gas transfer velocity from 9 data sets (11 research cruises, see Yang et al. (2022,https://doi.org/10.3389/fmars.2022.826421)). The sea state dependent parameterization for CO2gas transfer velocity is consistent with observations, while the traditional wind‐only parameterization used in most global models slightly underestimates the observations of gas transfer velocity. We produce a climatology of the sea state dependent gas transfer velocity using reanalysis wind and wave data spanning 1980–2017. The climatology shows that the enhanced gas transfer velocity occurs frequently in regions with developed sea states (with strong wave breaking and high significant wave height). The present study provides a general sea state dependent parameterization for gas transfer, which can be implemented in global coupled models. 
    more » « less
  4. Abstract Elevated seismic noise for moderate‐size earthquakes recorded at teleseismic distances has limited our ability to see their complexity. We develop a machine‐learning‐based algorithm to separate noise and earthquake signals that overlap in frequency. The multi‐task encoder‐decoder model is built around a kernel pre‐trained on local (e.g., short distances) earthquake data (Yin et al., 2022,https://doi.org/10.1093/gji/ggac290) and is modified by continued learning with high‐quality teleseismic data. We denoise teleseismic P waves of deep Mw5.0+ earthquakes and use the clean P waves to estimate source characteristics with reduced uncertainties of these understudied earthquakes. We find a scaling of moment and duration to beM0 ≃ τ4, and a resulting strong scaling of stress drop and radiated energy with magnitude ( and ). The median radiation efficiency is 5%, a low value compared to crustal earthquakes. Overall, we show that deep earthquakes have weak rupture directivity and few subevents, suggesting a simple model of a circular crack with radial rupture propagation is appropriate. When accounting for their respective scaling with earthquake size, we find no systematic depth variations of duration, stress drop, or radiated energy within the 100–700 km depth range. Our study supports the findings of Poli and Prieto (2016,https://doi.org/10.1002/2016jb013521) with a doubled amount of earthquakes investigated and with earthquakes of lower magnitudes. 
    more » « less
  5. Abstract A very high spatial resolution (∼25 m pixel at 90 km altitude) OH airglow imager was installed at the Andes Lidar Observatory on Cerro Pachón, Chile, in February 2016. This instrument was collocated with a Na wind‐temperature lidar. On 1 March 2016, the lidar data showed that the atmosphere was dynamically unstable before 0100 UT and thus conducive to the formation of Kelvin‐Helmholtz instabilities (KHIs). The imager revealed the presence of a KHI and an apparent atmospheric gravity wave (AGW) propagating approximately perpendicular to the plane of primary KHI motions. The AGW appears to have induced modulations of the shear layer leading to misalignments of the emerging KHI billows. These enabled strong KHI billow interactions, as they achieved large amplitudes and a rapid transition to turbulence thereafter. The interactions manifested themselves as vortex tube and knot features that were earlier identified in laboratory studies, as discussed in Thorpe (1987,https://doi.org/10.1029/JC092iC05p05231; 2002,https://doi.org/10.1002/qj.200212858307) and inferred to be widespread in the atmosphere based on features seen in tropospheric clouds but which have never been identified in previous upper atmospheric observations. This study presents the first high‐resolution airglow imaging observation of these KHI interaction dynamics that drive rapid transitions to turbulence and suggest the potential importance of these dynamics in the mesosphere and at other altitudes. A companion paper (Fritts et al., 2020,https://doi.org/10.1029/2020JD033412) modeling these dynamics confirms that the vortex tubes and knots yield more rapid and significantly enhanced turbulence relative to the internal instabilities of individual KHI billows. 
    more » « less