Abstract DarkSide-20k is a novel liquid argon dark matter detector currently under construction at the Laboratori Nazionali del Gran Sasso (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN) that will push the sensitivity for Weakly Interacting Massive Particle (WIMP) detection into the neutrino fog. The core of the apparatus is a dual-phase Time Projection Chamber (TPC), filled with 50 tonnes of low radioactivity underground argon (UAr) acting as the WIMP target. NUV-HD-cryo Silicon Photomultipliers (SiPM)s designed by Fondazione Bruno Kessler (FBK) (Trento, Italy) were selected as the photon sensors covering two$$10.5~\text {m}^2$$ Optical Planes, one at each end of the TPC, and a total of$$5~\text {m}^2$$ photosensitive surface for the liquid argon veto detectors. This paper describes the Quality Assurance and Quality Control (QA/QC) plan and procedures accompanying the production of FBK NUV-HD-cryo SiPM wafers manufactured by LFoundry s.r.l. (Avezzano, AQ, Italy). SiPM characteristics are measured at 77 K at the wafer level with a custom-designed probe station. As of March 2025, 1314 of the 1400 production wafers (94% of the total) for DarkSide-20k were tested. The wafer yield is$$93.2\pm 2.5$$ %, which exceeds the 80% specification defined in the original DarkSide-20k production plan.
more »
« less
This content will become publicly available on February 1, 2026
Benchmarking the design of the cryogenics system for the underground argon in DarkSide-20k
DarkSide-20k (DS-20k) is a dark matter detection experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It utilises ∼ 100 t of low radioactivity argon from an underground source (UAr) in its inner detector, with half serving as target in a dual-phase time projection chamber (TPC). The UAr cryogenics system must maintain stable thermodynamic conditions throughout the experiment's lifetime of over 10 years. Continuous removal of impurities and radon from the UAr is essential for maximising signal yield and mitigating background. We are developing an efficient and powerful cryogenics system with a gas purification loop with a target circulation rate of 1000 slpm. Central to its design is a condenser operated with liquid nitrogen which is paired with a gas heat exchanger cascade, delivering a combined cooling power of more than 8 kW. Here we present the design choices in view of the DS-20k requirements, in particular the condenser's working principle and the cooling control, and we show test results obtained with a dedicated benchmarking platform at CERN and LNGS. We find that the thermal efficiency of the recirculation loop, defined in terms of nitrogen consumption per argon flow rate, is 95 % and the pressure in the test cryostat can be maintained within ±(0.1–0.2) mbar. We further detail a 5-day cool-down procedure of the test cryostat, maintaining a cooling rate typically within -2 K/h, as required for the DS-20k inner detector. Additionally, we assess the circuit's flow resistance, and the heat transfer capabilities of two heat exchanger geometries for argon phase change, used to provide gas for recirculation. We conclude by discussing how our findings influence the finalisation of the system design, including necessary modifications to meet requirements and ongoing testing activities.
more »
« less
- PAR ID:
- 10585325
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- IOP Science
- Date Published:
- Journal Name:
- Journal of Instrumentation
- Volume:
- 20
- Issue:
- 02
- ISSN:
- 1748-0221
- Page Range / eLocation ID:
- P02016
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This paper is focused on the modeling of a brazed plate heat exchanger (BPHE) for a novel in-rack cooling loop coupled with heat recovery capability for enhanced thermal management of datacenters. In the proposed technology, the BPHE is acting as a condenser, and the model presented in this study can be applied in either the cooling loop or vapor recompression loop. Thus, the primary fluid enters as either superheated (in the vapor recompression loop) or saturated vapor (in the cooling loop), while the secondary fluid enters as a sub-cooled liquid. The model augments an existing technique from the open literature and is applied to condensation of a low-pressure refrigerant R245fa. The model assumes a two-fluid heat exchanger with R245fa and water as the primary and secondary fluids, respectively, flowing in counterflow configuration; however, the model can also handle parallel flow configuration. The 2-D model divides the heat exchanger geometry into a discrete number of slices to analyze heat transfer and pressure drops (including static, momentum and frictional losses) of both fluids, which are used to predict the exit temperature and pressure of both fluids. The model predicts the exchanger duty based on the local energy balance. The predicted values of fluid output properties (secondary fluid temperature and pressure, and primary fluid vapor quality and pressure) along with heat exchanger duty show good agreement when compared against a commercial software.more » « less
-
null (Ed.)This paper is focused on the modeling of a brazed plate heat exchanger (BPHE) for a novel in-rack cooling loop coupled with heat recovery capability for enhanced thermal management of datacenters. In the proposed technology, the BPHE is acting as a condenser, and the model presented in this study can be applied in either the cooling loop or vapor recompression loop. Thus, the primary fluid enters as either superheated (in the vapor recompression loop) or saturated vapor (in the cooling loop), while the secondary fluid enters as a sub-cooled liquid. The model augments an existing technique from the open literature and is applied to condensation of a low-pressure refrigerant R245fa. The model assumes a two-fluid heat exchanger with R245fa and water as the primary and secondary fluids, respectively, flowing in counterflow configuration; however, the model can also handle parallel flow configuration. The 2-D model divides the heat exchanger geometry into a discrete number of slices to analyze heat transfer and pressure drops (including static, momentum and frictional losses) of both fluids, which are used to predict the exit temperature and pressure of both fluids. The model predicts the exchanger duty based on the local energy balance. The predicted values of fluid output properties (secondary fluid temperature and pressure, and primary fluid vapor quality and pressure) along with heat exchanger duty show good agreement when compared against a commercial software.more » « less
-
Data Center hybrid air/liquid cooling systems such as rear door heat exchangers, overhead and in row cooling systems enable localized, on-demand cooling, or “smart cooling.” At the heart of all hybrid cooling systems is an air to liquid cross flow heat exchanger that regulates the amount of cooling delivered by the system by modulating the liquid or air flows and/or temperatures. Due the central role that the heat exchanger plays in the system response, understanding the transient response of the heat exchanger is crucial for the precise control of hybrid cooling system. This paper reports on the transient experimental characterization of heat exchangers used in data centers applications. An experimental rig designed to introduce controlled transient perturbations in temperature and flow on the inlet air and liquid flow streams of a 12 in. × 12 in. heat exchanger test core is discussed. The conditioned air is delivered to the test core by a suction wind tunnel with upstream air heaters and a frequency variable axial blower to allow the control of air flow rate and bulk temperature. The conditioned water is delivered to the test core by a water delivery system consisting of two separate water circuits, one delivering cold water, and the other hot water. By switching from one circuit to the other or mixing water from both circuits, the rig is capable of generating step, ramp and frequency perturbations in water temperature at constant flow or step, ramp or frequency perturbations in water flow at constant temperature or combinations of temperature and water flow perturbations. Experimental data are presented for a 12×12 heat exchanger core with a single liquid pass under different transient perturbationsmore » « less
-
Abstract The Aria cryogenic distillation plant, located in Sardinia, Italy, is a key component of the DarkSide-20k experimental program for WIMP dark matter searches at the INFN Laboratori Nazionali del Gran Sasso, Italy. Aria is designed to purify the argon, extracted from underground wells in Colorado, USA, and used as the DarkSide-20k target material, to detector-grade quality. In this paper, we report the first measurement of argon isotopic separation by distillation with the 26 m tall Aria prototype. We discuss the measurement of the operating parameters of the column and the observation of the simultaneous separation of the three stable argon isotopes: $${}^{36}\hbox {Ar}$$ 36 Ar , $${}^{38}\textrm{Ar}$$ 38 Ar , and $${}^{40}\textrm{Ar}$$ 40 Ar . We also provide a detailed comparison of the experimental results with commercial process simulation software. This measurement of isotopic separation of argon is a significant achievement for the project, building on the success of the initial demonstration of isotopic separation of nitrogen using the same equipment in 2019.more » « less