skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1935947

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Objective.This paper introduces a novel PET imaging methodology called 3-dimensional positron imaging (3Dπ), which integrates total-body coverage, time-of-flight (TOF) technology, ultra-low dose imaging capabilities, and ultra-fast readout electronics inspired by emerging technology from the DarkSide collaboration.Approach.The study evaluates the performance of 3Dπusing Monte Carlo simulations based on NEMA NU 2-2018 protocols. The methodology employs a homogenous, monolithic scintillator composed of liquid argon (LAr) doped with xenon (Xe) with silicon photomultipliers (SiPMs) operating at cryogenic temperatures.Main results.Substantial improvements in system performance are observed, with the 3Dπsystem achieving a noise equivalent count rate of 3.2 Mcps at 17.3 kBq ml−1, continuing to increase up to 4.3 Mcps at 40 kBq ml−1. Spatial resolution measurements show an average FWHM of 2.7 mm across both axial positions. The system exhibits superior sensitivity, with values reaching 373 kcps MBq−1with a line source at the center of the field of view. Additionally, 3Dπachieves a TOF resolution of 151 ps at 5.3 kBq ml−1, highlighting its potential to produce high-quality images with reduced noise levels.Significance.The study underscores the potential of 3Dπin improving PET imaging performance, offering the potential for shorter scan times and reduced radiation exposure for patients. The Xe-doped LAr offers advantages such as fast scintillation, enhanced light yield, and cost-effectiveness. Future research will focus on optimizing system geometry and further refining reconstruction algorithms to exploit the strengths of 3Dπfor clinical applications. 
    more » « less
    Free, publicly-accessible full text available March 12, 2026
  2. Abstract The DarkSide-20k dark matter experiment, currently under construction at LNGS, features a dual-phase time projection chamber (TPC) with a ∼ 50 t argon target from an underground well. At this scale, it is crucial to optimise the argon flow pattern for efficient target purification and for fast distribution of internal gaseous calibration sources with lifetimes of the order of hours. To this end, we have performed computational fluid dynamics simulations and heat transfer calculations. The residence time distribution shows that the detector is well-mixed on time-scales of the turnover time (∼ 40 d). Notably, simulations show that despite a two-order-of-magnitude difference between the turnover time and the half-life of83mKr of 1.83 h, source atoms have the highest probability to reach the centre of the TPC 13 min after their injection, allowing for a homogeneous distribution before undergoing radioactive decay. We further analyse the thermal aspects of dual-phase operation and define the requirements for the formation of a stable gas pocket on top of the liquid. We find a best-estimate value for the heat transfer rate at the liquid-gas interface of 62 W with an upper limit of 144 W and a minimum gas pocket inlet temperature of 89 K to avoid condensation on the acrylic anode. This study also informs the placement of liquid inlets and outlets in the TPC. The presented techniques are widely applicable to other large-scale, noble-liquid detectors. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  3. Abstract DarkSide-20k is a novel liquid argon dark matter detector currently under construction at the Laboratori Nazionali del Gran Sasso (LNGS) of the Istituto Nazionale di Fisica Nucleare (INFN) that will push the sensitivity for Weakly Interacting Massive Particle (WIMP) detection into the neutrino fog. The core of the apparatus is a dual-phase Time Projection Chamber (TPC), filled with 50 tonnes of low radioactivity underground argon (UAr) acting as the WIMP target. NUV-HD-cryo Silicon Photomultipliers (SiPM)s designed by Fondazione Bruno Kessler (FBK) (Trento, Italy) were selected as the photon sensors covering two$$10.5~\text {m}^2$$ 10.5 m 2 Optical Planes, one at each end of the TPC, and a total of$$5~\text {m}^2$$ 5 m 2 photosensitive surface for the liquid argon veto detectors. This paper describes the Quality Assurance and Quality Control (QA/QC) plan and procedures accompanying the production of FBK NUV-HD-cryo SiPM wafers manufactured by LFoundry s.r.l. (Avezzano, AQ, Italy). SiPM characteristics are measured at 77 K at the wafer level with a custom-designed probe station. As of March 2025, 1314 of the 1400 production wafers (94% of the total) for DarkSide-20k were tested. The wafer yield is$$93.2\pm 2.5$$ 93.2 ± 2.5 %, which exceeds the 80% specification defined in the original DarkSide-20k production plan. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  4. Abstract The stability of a dark matter detector on the timescale of a few years is a key requirement due to the large exposure needed to achieve a competitive sensitivity. It is especially crucial to enable the detector to potentially detect any annual event rate modulation, an expected dark matter signature. In this work, we present the performance history of the DarkSide-50 dual-phase argon time projection chamber over its almost three-year low-radioactivity argon run. In particular, we focus on the electroluminescence signal that enables sensitivity to sub-keV energy depositions. The stability of the electroluminescence yield is found to be better than 0.5%. Finally, we show the temporal evolution of the observed event rate around the sub-keV region being consistent to the background prediction. 
    more » « less
  5. Abstract Experiments aimed at direct searches for WIMP dark matter require highly effective reduction of backgrounds and control of any residual radioactive contamination. In particular, neutrons interacting with atomic nuclei represent an important class of backgrounds due to the expected similarity of a WIMP-nucleon interaction, so that such experiments often feature a dedicated neutron detector surrounding the active target volume. In the context of the development of DarkSide-20k detector at INFN Gran Sasso National Laboratory (LNGS), several R&D projects were conceived and developed for the creation of a new hybrid material rich in both hydrogen and gadolinium nuclei to be employed as an essential element of the neutron detector. Thanks to its very high cross-section for neutron capture, gadolinium is one of the most widely used elements in neutron detectors, while the hydrogen-rich material is instrumental in efficiently moderating the neutrons. In this paper results from one of the R&Ds are presented. In this effort the new hybrid material was obtained as a poly(methyl methacrylate) (PMMA) matrix, loaded with gadolinium oxide in the form of nanoparticles. We describe its realization, including all phases of design, purification, construction, characterization, and determination of mechanical properties of the new material. 
    more » « less
  6. Abstract The direct search for dark matter in the form of weakly interacting massive particles (WIMP) is performed by detecting nuclear recoils produced in a target material from the WIMP elastic scattering. The experimental identification of the direction of the WIMP-induced nuclear recoils is a crucial asset in this field, as it enables unmistakable modulation signatures for dark matter. The Recoil Directionality (ReD) experiment was designed to probe for such directional sensitivity in argon dual-phase time projection chambers (TPC), that are widely considered for current and future direct dark matter searches. The TPC of ReD was irradiated with neutrons at the INFN Laboratori Nazionali del Sud. Data were taken with nuclear recoils of known directions and kinetic energy of 72 keV, which is within the range of interest for WIMP-induced signals in argon. The direction-dependent liquid argon charge recombination model by Cataudella et al. was adopted and a likelihood statistical analysis was performed, which gave no indications of significant dependence of the detector response to the recoil direction. The aspect ratioRof the initial ionization cloud is$$R < 1.072$$ R < 1.072 with 90 % confidence level. 
    more » « less
  7. Abstract We present a novel approach for the search of dark matter in the DarkSide-50 experiment, relying on Bayesian Networks. This method incorporates the detector response model into the likelihood function, explicitly maintaining the connection with the quantity of interest. No assumptions about the linearity of the problem or the shape of the probability distribution functions are required, and there is no need to morph signal and background spectra as a function of nuisance parameters. By expressing the problem in terms of Bayesian Networks, we have developed an inference algorithm based on a Markov Chain Monte Carlo to calculate the posterior probability. A clever description of the detector response model in terms of parametric matrices allows us to study the impact of systematic variations of any parameter on the final results. Our approach not only provides the desired information on the parameter of interest, but also potential constraints on the response model. Our results are consistent with recent published analyses and further refine the parameters of the detector response model. 
    more » « less
  8. Abstract Aria is a plant hosting a$${350}\,\hbox {m}$$ 350 m cryogenic isotopic distillation column, the tallest ever built, which is being installed in a mine shaft at Carbosulcis S.p.A., Nuraxi-Figus (SU), Italy. Aria is one of the pillars of the argon dark-matter search experimental program, lead by the Global Argon Dark Matter Collaboration. It was designed to reduce the isotopic abundance of$${^{39}\hbox {Ar}}$$ 39 Ar in argon extracted from underground sources, called Underground Argon (UAr), which is used for dark-matter searches. Indeed,$${^{39}\hbox {Ar}}$$ 39 Ar is a$$\beta $$ β -emitter of cosmogenic origin, whose activity poses background and pile-up concerns in the detectors. In this paper, we discuss the requirements, design, construction, tests, and projected performance of the plant for the isotopic cryogenic distillation of argon. We also present the successful results of the isotopic cryogenic distillation of nitrogen with a prototype plant. 
    more » « less
  9. The Xenon-Argon Technology (X-ArT) Collaboration presents a study on the dynamics of pure and xenon-doped liquid argon (LAr) scintillation. Using two types of silicon photomultipliers sensitive to different wavelength ranges, we provide evidence in favor of a contribution from long-lived ( > 10 μ s ) extreme ultraviolet (EUV) lines emitted from argon atomic states, which enhances the light yield. This component is present in both pure and xenon-doped LAr, becoming more pronounced at higher xenon concentrations, where it complements the traditional collisional energy transfer process. To explain this mechanism, we develop a comprehensive model of the Xe-doped LAr scintillation process that integrates both collisional and radiative contributions. Additionally, we investigate how xenon doping affects LAr scintillation light yield and pulse shape discrimination. Finally, we hypothesize that the EUV component may explain the emission of spurious electrons, a known challenge in light dark matter searches using noble liquids. By characterizing the scintillation dynamics in Xe-doped LAr, identifying the long-lived EUV component, and exploring the potential origin of spurious electrons, this work lays the groundwork for optimizing detector performance and advancing the design and sensitivity of future noble liquid particle detectors. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  10. DarkSide-20k (DS-20k) is a dark matter detection experiment under construction at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It utilises ∼ 100 t of low radioactivity argon from an underground source (UAr) in its inner detector, with half serving as target in a dual-phase time projection chamber (TPC). The UAr cryogenics system must maintain stable thermodynamic conditions throughout the experiment's lifetime of over 10 years. Continuous removal of impurities and radon from the UAr is essential for maximising signal yield and mitigating background. We are developing an efficient and powerful cryogenics system with a gas purification loop with a target circulation rate of 1000 slpm. Central to its design is a condenser operated with liquid nitrogen which is paired with a gas heat exchanger cascade, delivering a combined cooling power of more than 8 kW. Here we present the design choices in view of the DS-20k requirements, in particular the condenser's working principle and the cooling control, and we show test results obtained with a dedicated benchmarking platform at CERN and LNGS. We find that the thermal efficiency of the recirculation loop, defined in terms of nitrogen consumption per argon flow rate, is 95 % and the pressure in the test cryostat can be maintained within ±(0.1–0.2) mbar. We further detail a 5-day cool-down procedure of the test cryostat, maintaining a cooling rate typically within -2 K/h, as required for the DS-20k inner detector. Additionally, we assess the circuit's flow resistance, and the heat transfer capabilities of two heat exchanger geometries for argon phase change, used to provide gas for recirculation. We conclude by discussing how our findings influence the finalisation of the system design, including necessary modifications to meet requirements and ongoing testing activities. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026