Abstract The World Magnetic Model (WMM) is a geomagnetic main field model that is widely used for navigation by governments, industry and the general public. In recent years, the model has been derived using high accuracy magnetometer data from the Swarm mission. This study explores the possibility of developing future WMMs in the post-Swarm era using data from the Iridium satellite constellation. Iridium magnetometers are primarily used for attitude control, so they are not designed to produce the same level of accuracy as magnetic data from scientific missions. Iridium magnetometer errors range from 30 nT quantization to hundreds of nT errors due to spacecraft contamination and calibration uncertainty, whereas Swarm measurements are accurate to about 1 nT. The calibration uncertainty in the Iridium measurements is identified as a major error source, and a method is developed to calibrate the spacecraft measurements using data from a subset of the INTERMAGNET observatory network producing quasi-definitive data on a regular basis. After calibration, the Iridium data produced main field models with approximately 20 nT average error and 40 nT maximum error as compared to the CHAOS-7.2 model. For many scientific and precision navigation applications, highly accurate Swarm-like measurements are still necessary, however, the Iridium-based models were shown to meet the WMM error tolerances, indicating that Iridium is a viable data source for future WMMs. Graphical Abstract
more »
« less
Citizen science: Development of a low-cost magnetometer system for a coordinated space weather monitoring
As part of Ham Radio Science Citizen Investigation (HamSCI) Personal Space Weather Station (PSWS) project, a low-cost, commercial off-the-shelf magnetometer has been developed to provide quantitative and qualitative measurements of the geospace environment from the ground for both scientific and operational purposes at a cost that will allow for crowd-sourced data contributions. The PSWS magnetometers employ a magneto-inductive sensor technology to record three-axis magnetic field variations with a field resolution of ~3 nT at a 1 Hz sample rate. The measurement range of the sensor is +/-1.1e6 nT) and is valid over a temperature range of −40 °C to +85 °C. Data from the PSWS network will combine these magnetometer measurements with high frequency (HF, 3–30 MHz) radio observations to monitor large-scale current systems and ionospheric disturbances due to drivers from both space and the atmosphere. A densely-spaced magnetometer array, once established, will demonstrate their space weather monitoring capability to an unprecedented spatial extent. Magnetic field data obtained by the magnetometers installed at various locations in the US are presented and compared with the existing magnetometers nearby, demonstrating that the performance is very adequate for scientific investigations.
more »
« less
- Award ID(s):
- 2002278
- PAR ID:
- 10585457
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- HardwareX
- Volume:
- 20
- Issue:
- C
- ISSN:
- 2468-0672
- Page Range / eLocation ID:
- e00580
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Magnetometers are a key component of heliophysics research providing valuable insight into the dynamics of electromagnetic field regimes and their coupling throughout the solar system. On satellites, magnetometers provide detailed observations of the extension of the solar magnetic field into interplanetary space and of planetary environments. At Earth, magnetometers are deployed on the ground in extensive arrays spanning the polar cap, auroral and sub-auroral zone, mid- and low-latitudes and equatorial electrojet with nearly global coverage in azimuth (longitude or magnetic local time—MLT). These multipoint observations are used to diagnose both ionospheric and magnetospheric processes as well as the coupling between the solar wind and these two regimes at a fraction of the cost of in-situ instruments. Despite their utility in research, ground-based magnetometer data can be difficult to use due to a variety of file formats, multiple points of access for the data, and limited software. In this short article we review the Open-Source Python library GMAG which provides rapid access to ground-based magnetometer data from a number of arrays in a Pandas DataFrame, a common data format used throughout scientific research.more » « less
-
Abstract Magnetometers are essential instruments in space physics, but their measurements are often contaminated by various external interference sources. In this work, we present a comprehensive review of existing magnetometer interference removal methods and introduce MAGPRIME (MAGnetic signal PRocessing, Interference Mitigation, and Enhancement), an open‐source Python library featuring a collection of state‐of‐the‐art interference removal algorithms. MAGPRIME streamlines the process of interference removal in magnetic field data by providing researchers with an integrated, easy‐to‐use platform. We detail the design, structure, and functionality of the library, as well as its potential to facilitate future research by enabling rapid testing and customization of interference removal methods. Using the MAGPRIME Library, we present two Monte Carlo benchmark results to compare the efficacy of interference removal algorithms in different magnetometer configurations. In Benchmark A, the Underdetermined Blind Source Separation (UBSS) and traditional gradiometry algorithms surpass the uncleaned boom‐mounted magnetometers, achieving improved correlation and reducing median error in each simulation. Benchmark B tests the efficacy of the suite of MAGPRIME algorithms in a boomless magnetometer configuration. In this configuration, the UBSS algorithm proves to significantly reduce median error, along with improvements in median correlation and signal to noise ratio. This study highlights MAGPRIME's potential in enhancing magnetic field measurement accuracy in various spacecraft designs, from traditional gradiometry setups to compact, cost‐effective alternatives like bus‐mounted CubeSat magnetometers, thus establishing it as a valuable tool for researchers and engineers in space exploration and magnetism studies.more » « less
-
null (Ed.)Variations of vertical atmospheric electric field E z have been attributed mainly to meteorological processes. On the other hand, the theory of electromagnetic waves in the atmosphere, between the bottom ionosphere and earth’s surface, predicts two modes, magnetic H (TE) and electric E (TH) modes, where the E-mode has a vertical electric field component, E z . Past attempts to find signatures of ULF (periods from fractions to tens of minutes) disturbances in E z gave contradictory results. Recently, study of ULF disturbances of atmospheric electric field became feasible thanks to project GLOCAEM, which united stations with 1 sec measurements of potential gradient. These data enable us to address the long-standing problem of the coupling between atmospheric electricity and space weather disturbances at ULF time scales. Also, we have reexamined results of earlier balloon-born electric field and ground magnetic field measurements in Antarctica. Transmission of storm sudden commencement (SSC) impulses to lower latitudes was often interpreted as excitation of the electric TH 0 mode, instantly propagating along the ionosphere–ground waveguide. According to this theoretical estimate, even a weak magnetic signature of the E-mode ∼1 nT must be accompanied by a burst of E z well exceeding the atmospheric potential gradient. We have examined simultaneous records of magnetometers and electric field-mills during >50 SSC events in 2007–2019 in search for signatures of E-mode. However, the observed E z disturbance never exceeded background fluctuations ∼10 V/m, much less than expected for the TH 0 mode. We constructed a model of the electromagnetic ULF response to an oscillating magnetospheric field-aligned current incident onto the realistic ionosphere and atmosphere. The model is based on numerical solution of the full-wave equations in the atmospheric-ionospheric collisional plasma, using parameters that were reconstructed using the IRI model. We have calculated the vertical and horizontal distributions of magnetic and electric fields of both H- and E-modes excited by magnetospheric field-aligned currents. The model predicts that the excitation rate of the E-mode by magnetospheric disturbances is low, so only a weak E z response with a magnitude of ∼several V/m will be produced by ∼100 nT geomagnetic disturbance. However, at balloon heights (∼30 km), electric field of the E-mode becomes dominating. Predicted amplitudes of horizontal electric field in the atmosphere induced by Pc5 pulsations and travelling convection vortices, about tens of mV/m, are in good agreement with balloon electric field and ground magnetometer observations.more » « less
-
Abstract We present details of a high-accuracy absolute scalar magnetometer based on pulsed proton NMR. The B-field magnitude is determined from the precession frequency of proton spins in a cylindrical sample of water after accounting for field perturbations from probe materials, sample shape, and other corrections. Features of the design, testing procedures, and corrections necessary for qualification as an absolute scalar magnetometer are described. The device was tested at B = 1.45 T but can be modified for a range exceeding 1–3 T. The magnetometer was used to calibrate other NMR magnetometers and measure absolute magnetic field magnitudes to an accuracy of 19 parts per billion as part of a measurement of the muon magnetic moment anomaly at Fermilab.more » « less
An official website of the United States government

