skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impacts of Weather Anomalies and Climate on Plant Disease
ABSTRACT Predicting the effects of climate change on plant disease is critical for protecting ecosystems and food production. Here, we show how disease pressure responds to short‐term weather, historical climate and weather anomalies by compiling a global database (4339 plant–disease populations) of disease prevalence in both agricultural and wild plant systems. We hypothesised that weather and climate would play a larger role in disease in wild versus agricultural plant populations, which the results supported. In wild systems, disease prevalence peaked when the temperature was 2.7°C warmer than the historical average for the same time of year. We also found evidence of a negative interactive effect between weather anomalies and climate in wild systems, consistent with the idea that climate maladaptation can be an important driver of disease outbreaks. Temperature and precipitation had relatively little explanatory power in agricultural systems, though we observed a significant positive effect of current temperature. These results indicate that disease pressure in wild plants is sensitive to nonlinear effects of weather, weather anomalies and their interaction with historical climate. In contrast, warmer temperatures drove risks for agricultural plant disease outbreaks within the temperature range examined regardless of historical climate, suggesting vulnerability to ongoing climate change.  more » « less
Award ID(s):
2109293 2011147
PAR ID:
10585509
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
British Ecological Society
Date Published:
Journal Name:
Ecology Letters
Volume:
28
Issue:
1
ISSN:
1461-023X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Disease outbreaks among wildlife have surged in recent decades alongside climate change, although it remains unclear how climate change alters disease dynamics across different geographic regions. We amassed a global, spatiotemporal dataset describing parasite prevalence across 7346 wildlife populations and 2021 host-parasite combinations, compiling local weather and climate records at each location. We found that hosts from cool and warm climates experienced increased disease risk at abnormally warm and cool temperatures, respectively, as predicted by the thermal mismatch hypothesis. This effect was greatest in ectothermic hosts and similar in terrestrial and freshwater systems. Projections based on climate change models indicate that ectothermic wildlife hosts from temperate and tropical zones may experience sharp increases and moderate reductions in disease risk, respectively, though the magnitude of these changes depends on parasite identity. 
    more » « less
  2. Abstract Both theory and prior studies predict that climate warming should increase attack rates by herbivores and pathogens on plants. However, past work has often assumed that variation in abiotic conditions other than temperature (e.g. precipitation) do not alter warming responses of plant damage by natural enemies. Studies over short time periods span low variation in weather, and studies over long time‐scales often neglect to account for fine‐scale weather conditions.Here, we used a 20+ year warming experiment to investigate if warming affects on herbivory and pathogen disease are dependent on variation in ambient weather observed over 3 years. We studied three common grass species in a subalpine meadow in the Colorado Rocky Mountains, USA. We visually estimated herbivory and disease every 2 weeks during the growing season and evaluated weather conditions during the previous 2‐ or 4‐week time interval (2‐week average air temperature, 2‐ and 4‐week cumulative precipitation) as predictors of the probability and amount of damage.Herbivore attack was 13% more likely and damage amount was 29% greater in warmed plots than controls across the focal species but warming treatment had little affect on plant disease. Herbivory presence and damage increased the most with experimental warming when preceded by wetter, rather than drier, fine‐scale weather, but preceding ambient temperature did not strongly interact with elevated warming to influence herbivory.Disease presence and amount increased, on average, with warmer weather and more precipitation regardless of warming.Synthesis. The effect of warming over reference climate on herbivore damage is dependent on and amplified by fine‐scale weather variation, suggesting more boom‐and‐bust damage dynamics with increasing climate variability. However, the mean effect of regional climate change is likely reduced monsoon rainfall, for which we predict a reduction in insect herbivore damage. Plant disease was generally unresponsive to warming, which may be a consequence of our coarse disease estimates that did not track specific pathogen species or guilds. The results point towards temperature as an important but not sufficient determinant and regulator of species interactions, where precipitation and other constraints may determine the affect of warming. 
    more » « less
  3. Abstract Climate change is contributing to declines of insects through rising temperatures, altered precipitation patterns, and an increasing frequency of extreme events. The impacts of both gradual and sudden shifts in weather patterns are realized directly on insect physiology and indirectly through impacts on other trophic levels. Here, we investigated direct effects of seasonal weather on butterfly occurrences and indirect effects mediated by plant productivity using a temporally intensive butterfly monitoring dataset, in combination with high‐resolution climate data and a remotely sensed indicator of plant primary productivity. Specifically, we used Bayesian hierarchical path analysis to quantify relationships between weather and weather‐driven plant productivity on the occurrence of 94 butterfly species from three localities distributed across an elevational gradient. We found that snow pack exerted a strong direct positive effect on butterfly occurrence and that low snow pack was the primary driver of reductions during drought. Additionally, we found that plant primary productivity had a consistently negative effect on butterfly occurrence. These results highlight mechanisms of weather‐driven declines in insect populations and the nuances of climate change effects involving snow melt, which have implications for ecological theories linking topographic complexity to ecological resilience in montane systems. 
    more » « less
  4. Shellfish fisheries and aquaculture within the Chesapeake Bay (hereafter 'the Bay') and its tributaries have been historically impacted by disease and climate events. Climate-driven shifts in temperature and salinity can alter host-parasite dynamics, influencing outbreaks. Here, we explore the relationship between temperature, salinity and parasite distribution and abundance in the eastern oysterCrassostrea virginica-Perkinsus marinussystem. We use long-term (30 yr) environmental data andP. marinussurveys in the Bay to identify (1) how climate affectsP. marinusprevalence and intensity, (2) seasonal and climate-driven infection patterns, and (3) regional environmental influences on disease. We found significant relationships betweenP. marinusinfection intensity, prevalence, increasing temperature and decreasing salinity. Our results indicated that there is an overall decreased abundance ofP. marinusprevalence and intensity throughout the Bay driven by decreases in salinity over time, most prominently from 2003-2020. However, these temporal trends in prevalence and intensity vary largely by region, with some regions still experiencing high disease burden. Examining monthly environmental parameters reinforced the dominant role of salinity in driving disease patterns. Salinity had significant relationships with prevalence and intensity year-round, with the largest effects in late spring/early summer. Monthly temperatures had fewer significant relationships to prevalence and intensity, but the largest significant effects were seen in late winter/early spring. Notably, this study is the first to document that winter salinity influences fall parasite prevalence, sometimes exerting a greater effect than temperature. Continued and expanded monitoring of marine disease is crucial to understand how the changing climate is impacting disease. 
    more » « less
  5. Abstract In spite of the mean warming trend over the last few decades and its amplification in the Arctic, some studies have found no robust decline or even a slight increase in wintertime cold air outbreaks over North America. But fossil evidence from warmer paleoclimate periods indicates that the interior of North America never dropped below freezing even in the depths of winter, which implies that the maintenance of cold air outbreaks is unlikely to continue indefinitely with future warming. To identify key mechanisms affecting cold air outbreaks and understand how and why they will change in a warmer climate, we examine the development of North American cold air outbreaks in both a preindustrial and a roughly 8×CO2scenario using the Community Earth System Model, version 2 (CESM2). We observe a sharp drop-off in the wintertime temperature distribution at the freezing temperature, suppressing below-freezing conditions in the warmer climate and above-freezing conditions in the preindustrial case. The disappearance of Arctic sea ice and loss of the near-surface temperature inversion dramatically decrease the availability of below-freezing air in source regions. Using an air parcel trajectory analysis, we demonstrate a remarkable similarity in both the dynamics and diabatic effects acting on cold air masses in the two climate scenarios. Diabatic temperature evolution along cold air outbreak trajectories is a competition between cooling from longwave radiation and warming from boundary layer mixing. Surprisingly, while both diabatic effects strengthen in the warmer climate, the balance remains the same, with a net cooling of about −6 K over 10 days. Significance StatementWe compare a preindustrial climate scenario to a much warmer climate circa the year 2300 under high emissions to understand the physical processes that influence the coldest wintertime temperatures and how they will change with warming. We find that enhanced warming in the Arctic, and particularly over the Arctic Ocean due to the loss of wintertime sea ice, dramatically reduces the availability of cold air to be swept into North America. By tracing these cold air masses as they travel, we also find that they experience the same total amount of cooling in the much warmer climate as they did in the preindustrial climate even though many of the individual heating and cooling processes have gotten stronger. 
    more » « less