Abstract Entanglement is an intrinsic property of quantum mechanics and is predicted to be exhibited in the particles produced at the Large Hadron Collider. A measurement of the extent of entanglement in top quark-antiquark ( ) events produced in proton–proton collisions at a center-of-mass energy of 13 TeV is performed with the data recorded by the CMS experiment at the CERN LHC in 2016, and corresponding to an integrated luminosity of 36.3 fb−1. The events are selected based on the presence of two leptons with opposite charges and high transverse momentum. An entanglement-sensitive observableDis derived from the top quark spin-dependent parts of the production density matrix and measured in the region of the production threshold. Values of are evidence of entanglement andDis observed (expected) to be ( ) at the parton level. With an observed significance of 5.1 standard deviations with respect to the non-entangled hypothesis, this provides observation of quantum mechanical entanglement within pairs in this phase space. This measurement provides a new probe of quantum mechanics at the highest energies ever produced.
more »
« less
The Accelerating Decline of the Mass Transfer Rate in the Recurrent Nova T Pyxidis*
Abstract The recurrent nova T Pyxidis (T Pyx) has erupted six times since 1890, with its last outburst in 2011, and the relatively short recurrence time between classical nova explosions indicates that T Pyx must have a massive white dwarf (WD) accreting at a high rate. It is believed that, since its outburst in 1890, the mass transfer rate in T Pyx was very large due to a feedback loop where the secondary is heated by the hot WD. The feedback loop has been slowly shutting off, reducing the mass transfer rate, and thereby explaining the magnitude decline of T Pyx from ∼13.8 (before 1890) to 15.7 just before the 2011 eruption. We present an analysis of the latest Hubble Space Telescope far-ultraviolet and optical spectra, obtained 12 yr after the 2011 outburst, showing that the mass transfer rate has been steadily declining and is now below its preoutburst level by about 40%: yr−1for a WD mass of ∼1.0–1.4M⊙, an inclination of 50°–60°, reddening ofE(B−V) = 0.30 ± 0.05, and a Gaia Data Release 3 distance of pc. This steady decrease in the mass transfer rate in the ∼decade after the 2011 outburst is in sharp contrast with the more constant preoutburst ultraviolet continuum flux level from archival International Ultraviolet Explorer spectra. The flux (i.e., ) decline rate is 29 times faster now in the last ∼decade than observed since 1890 to ∼2010. The feedback loop shut off seems to be accelerating, at least in the decade following its 2011 outburst. In all eventualities, our analysis confirms that T Pyx is going through an unusually peculiar short-lived phase.
more »
« less
- Award ID(s):
- 1816100
- PAR ID:
- 10585832
- Publisher / Repository:
- ApJ
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 974
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 202
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A search for resonances in top quark pair ( ) production in final states with two charged leptons and multiple jets is presented, based on proton–proton collision data collected by the CMS experiment at the CERN LHC at , corresponding to 138 fb−1. The analysis explores the invariant mass of the system and two angular observables that provide direct access to the correlation of top quark and antiquark spins. A significant excess of events is observed near the kinematic threshold compared to the non-resonant production predicted by fixed-order perturbative quantum chromodynamics (pQCD). The observed enhancement is consistent with the production of a color-singlet pseudoscalar ( ) quasi-bound toponium state, as predicted by non-relativistic quantum chromodynamics. Using a simplified model for toponium, the cross section of the excess above the pQCD prediction is measured to be .more » « less
-
Abstract Accretion rates ( ) of young stars show a strong correlation with object mass (M); however, extension of the relation into the substellar regime is less certain. Here, we present the Comprehensive Archive of Substellar and Planetary Accretion Rates (CASPAR), the largest compilation to date of substellar accretion diagnostics. CASPAR includes: 658 stars, 130 brown dwarfs, and 10 bound planetary mass companions. In this work, we investigate the contribution of methodological systematics to scatter in the relation and compare brown dwarfs to stars. In our analysis, we rederive all quantities using self-consistent models, distances, and empirical line flux to accretion luminosity scaling relations to reduce methodological systematics. This treatment decreases the original 1σscatter in the relation by ∼17%, suggesting that it makes only a small contribution to the dispersion. The CASPAR rederived values are best fit by from 10MJto 2M⊙, confirming previous results. However, we argue that the brown-dwarf and stellar populations are better described separately and by accounting for both mass and age. Therefore, we derive separate age-dependent relations for these regions and find a steepening in the brown-dwarf slope with age. Within this mass regime, the scatter decreases from 1.36 dex to 0.94 dex, a change of ∼44%. This result highlights the significant role that evolution plays in the overall spread of accretion rates, and suggests that brown dwarfs evolve faster than stars, potentially as a result of different accretion mechanisms.more » « less
-
Abstract Polyatomic molecules have been identified as sensitive probes of charge-parity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both laser-coolable and have parity doublets in the ground electronic state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding the state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of YbOH using high-resolution optical spectroscopy on the nominally forbidden transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of the state, and accurately model the state’s structure with an effective Hamiltonian using best-fit parameters. Additionally, we perform Stark and Zeeman spectroscopy on the state and fit the molecule-frame dipole moment to Dand the effective electrong-factor to . Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excited state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules.more » « less
-
Abstract We generalize a magnetogram-matching Biot–Savart law (BSl) from planar to spherical geometry. For a given coronal current densityJ, this law determines the magnetic field whose radial component vanishes at the surface. The superposition of with a potential field defined by a given surface radial field,Br, provides the entire configuration whereBrremains unchanged by the currents. Using this approach, we (1) upgrade our regularized BSls for constructing coronal magnetic flux ropes (MFRs) and (2) propose a new method for decomposing a measured photospheric magnetic field as , where the potential,Bpot, toroidal,BT, and poloidal, , fields are determined byBr,Jr, and the surface divergence ofB–Bpot, respectively, all derived from magnetic data. OurBTis identical to the one in the alternative Gaussian decomposition by P. W. Schuck et al., whileBpotand are different from their poloidal fields and , which arepotentialin the infinitesimal proximity to the upper and lower side of the surface, respectively. In contrast, our has no such constraints and, asBpotandBT, refers to thesameupper side of the surface. In spite of these differences, for a continuousJdistribution across the surface,Bpotand are linear combinations of and . We demonstrate that, similar to the Gaussian method, our decomposition allows one to identify the footprints and projected surface-location of MFRs in the solar corona, as well as the direction and connectivity of their currents.more » « less
An official website of the United States government

