skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 11, 2025

Title: Correlating Halide Segregation with Photolysis in Mixed-Halide Perovskites via In situ Opto-gravimetric Analysis
Award ID(s):
2011750
PAR ID:
10585882
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Journal of the American Chemical Society
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
146
Issue:
49
ISSN:
0002-7863
Page Range / eLocation ID:
33368 to 33377
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Metal halide perovskites (MHPs) are frontrunners among solution-processable materials for lightweight, large-area and flexible optoelectronics. These materials, with the general chemical formula AMX 3 , are structurally complex, undergoing multiple polymorph transitions as a function of temperature and pressure. In this review, we provide a detailed overview of polymorphism in three-dimensional MHPs as a function of composition, with A = Cs + , MA + , or FA + , M = Pb 2+ or Sn 2+ , and X = Cl − , Br − , or I − . In general, perovskites adopt a highly symmetric cubic structure at elevated temperatures. With decreasing temperatures, the corner-sharing MX 6 octahedra tilt with respect to one another, resulting in multiple polymorph transitions to lower-symmetry tetragonal and orthorhombic structures. The temperatures at which these phase transitions occur can be tuned via different strategies, including crystal size reduction, confinement in scaffolds and (de-)pressurization. As discussed in the final section of this review, these solid-state phase transformations can significantly affect optoelectronic properties. Understanding factors governing these transitions is thus critical to the development of high-performance, stable devices. 
    more » « less
  2. null (Ed.)
  3. Barocaloric effects─solid-state thermal changes induced by the application and removal of hydrostatic pressure─offer the potential for energy-efficient heating and cooling without relying on volatile refrigerants. Here, we report that dialkylammonium halides─organic salts featuring bilayers of alkyl chains templated through hydrogen bonds to halide anions─display large, reversible, and tunable barocaloric effects near ambient temperature. The conformational flexibility and soft nature of the weakly confined hydrocarbons give rise to order–disorder phase transitions in the solid state that are associated with substantial entropy changes (>200 J kg–1 K–1) and high sensitivity to pressure (>24 K kbar–1), the combination of which drives strong barocaloric effects at relatively low pressures. Through high-pressure calorimetry, X-ray diffraction, and Raman spectroscopy, we investigate the structural factors that influence pressure-induced phase transitions of select dialkylammonium halides and evaluate the magnitude and reversibility of their barocaloric effects. Furthermore, we characterize the cyclability of thin-film samples under aggressive conditions (heating rate of 3500 K s–1 and over 11,000 cycles) using nanocalorimetry. Taken together, these results establish dialkylammonium halides as a promising class of pressure-responsive thermal materials. 
    more » « less