Mode connectivity provides novel geometric insights on analyzing loss landscapes and enables building high-accuracy pathways between well-trained neural networks. In this work, we propose to employ mode connectivity in loss landscapes to study the adversarial robustness of deep neural networks, and provide novel methods for improving this robustness. Our experiments cover various types of adversarial attacks applied to different network architectures and datasets. When network models are tampered with backdoor or error-injection attacks, our results demonstrate that the path connection learned using limited amount of bonafide data can effectively mitigate adversarial effects while maintaining the original accuracy on clean data. Therefore, mode connectivity provides users with the power to repair backdoored or error-injected models. We also use mode connectivity to investigate the loss landscapes of regular and robust models against evasion attacks. Experiments show that there exists a barrier in adversarial robustness loss on the path connecting regular and adversarially-trained models. A high correlation is observed between the adversarial robustness loss and the largest eigenvalue of the input Hessian matrix, for which theoretical justifications are provided. Our results suggest that mode connectivity offers a holistic tool and practical means for evaluating and improving adversarial robustness .
more »
« less
This content will become publicly available on April 24, 2026
Revisiting Mode Connectivity in Neural Networks with Bezier Surface
Understanding the loss landscapes of neural networks (NNs) is critical for optimizing model performance. Previous research has identified the phenomenon of mode connectivity on curves, where two well-trained NNs can be connected by a continuous path in parameter space where the path maintains nearly constant loss. In this work, we extend the concept of mode connectivity to explore connectivity on surfaces, significantly broadening its applicability and unlocking new opportunities. While initial attempts to connect models via linear surfaces in parameter space were unsuccessful, we propose a novel optimization technique that consistently discovers Bézier surfaces with low-loss and high-accuracy connecting multiple NNs in a nonlinear manner. We further demonstrate that even without optimization, mode connectivity exists in certain cases of Bézier surfaces, where the models are carefully selected and combined linearly. This approach provides a deeper and more comprehensive understanding of the loss landscape and offers a novel way to identify models with enhanced performance for model averaging and output ensembling. We demonstrate the effectiveness of our method on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets using VGG16, ResNet18, and ViT architectures.
more »
« less
- PAR ID:
- 10586066
- Publisher / Repository:
- The Thirteenth International Conference on Learning Representations
- Date Published:
- Format(s):
- Medium: X
- Location:
- singapore
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Zhang, Yanqing (Ed.)Learning from complex, multidimensional data has become central to computational mathematics, and among the most successful high-dimensional function approximators are deep neural networks (DNNs). Training DNNs is posed as an optimization problem to learn network weights or parameters that well-approximate a mapping from input to target data. Multiway data or tensors arise naturally in myriad ways in deep learning, in particular as input data and as high-dimensional weights and features extracted by the network, with the latter often being a bottleneck in terms of speed and memory. In this work, we leverage tensor representations and processing to efficiently parameterize DNNs when learning from high-dimensional data. We propose tensor neural networks (t-NNs), a natural extension of traditional fully-connected networks, that can be trained efficiently in a reduced, yet more powerful parameter space. Our t-NNs are built upon matrix-mimetic tensor-tensor products, which retain algebraic properties of matrix multiplication while capturing high-dimensional correlations. Mimeticity enables t-NNs to inherit desirable properties of modern DNN architectures. We exemplify this by extending recent work on stable neural networks, which interpret DNNs as discretizations of differential equations, to our multidimensional framework. We provide empirical evidence of the parametric advantages of t-NNs on dimensionality reduction using autoencoders and classification using fully-connected and stable variants on benchmark imaging datasets MNIST and CIFAR-10.more » « less
-
This paper extends the gap-based navigation technique Potential Gap with safety guarantees at the local planning level for a kinematic planar nonholonomic robot model, leading to Safer Gap . It relies on a subset of navigable free space from the robot to a gap, denoted the keyhole region. The region is defined by the union of the largest collision-free disc centered on the robot and a collision-free trapezoidal region directed through the gap. Safer Gap first generates Bézier-based collision-free paths within the keyhole regions. The keyhole region of the top scoring path is encoded by a shallow neural network-based zeroing barrier function (ZBF) synthesized in real-time. Nonlinear Model Predictive Control (NMPC) with Keyhole ZBF constraints and output tracking of the Bézier path, synthesizes a safe kinematically feasible trajectory. The Potential Gap projection operator serves as a last action to enforce safety if the NMPC optimization fails to converge to a solution within the prescribed time. Simulation and experimental validation of Safer Gap confirm its collision-free navigation properties.more » « less
-
null (Ed.)This paper presents a dynamic network rewiring (DNR) method to generate pruned deep neural network (DNN) models that are robust against adversarial attacks yet maintain high accuracy on clean im- ages. In particular, the disclosed DNR method is based on a unified constrained optimization formulation using a hybrid loss function that merges ultra-high model compression with robust adversar- ial training. This training strategy dynamically adjusts inter-layer connectivity based on per-layer normalized momentum computed from the hybrid loss function. In contrast to existing robust pruning frameworks that require multiple training iterations, the proposed learning strategy achieves an overall target pruning ratio with only a single training iteration and can be tuned to support both irregu- lar and structured channel pruning. To evaluate the merits of DNR, experiments were performed with two widely accepted models, namely VGG16 and ResNet-18, on CIFAR-10, CIFAR-100 as well as with VGG16 on Tiny-ImageNet. Compared to the baseline un- compressed models, DNR provides over 20× compression on all the datasets with no significant drop in either clean or adversarial classification accuracy. Moreover, our experiments show that DNR consistently finds compressed models with better clean and adver- sarial image classification performance than what is achievable through state-of-the-art alternatives. Our models and test codes are available at https://github.com/ksouvik52/DNR_ASP_DAC2021.more » « less
-
Learning from one's mistakes is an effective human learning technique where the learners focus more on the topics where mistakes were made, so as to deepen their understanding. In this paper, we investigate if this human learning strategy can be applied in machine learning. We propose a novel machine learning method called Learning From Mistakes (LFM), wherein the learner improves its ability to learn by focusing more on the mistakes during revision. We formulate LFM as a three-stage optimization problem: 1) learner learns; 2) learner re-learns focusing on the mistakes, and; 3) learner validates its learning. We develop an efficient algorithm to solve the LFM problem. We apply the LFM framework to neural architecture search on CIFAR-10, CIFAR-100, and Imagenet. Experimental results strongly demonstrate the effectiveness of our model.more » « less
An official website of the United States government
