skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deciphering the structure and potassium-ion transport mechanism of potassium borate glass
In this work, the transport path of potassium ions in potassium borate glass and structural units, NBO and cavity occupancy that affect the transport of potassium ions were analyzed in detail.  more » « less
Award ID(s):
2203142
PAR ID:
10586128
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Dalton Transactions
Date Published:
Journal Name:
Dalton Transactions
Volume:
53
Issue:
25
ISSN:
1477-9226
Page Range / eLocation ID:
10434 to 10445
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reproducing the exquisite ion selectivity displayed by biological ion channels in artificial nanopore systems has proven to be one of the most challenging tasks undertaken by the nanopore community, yet a successful achievement of this goal offers immense technological potential. Here, we show a strategy to design solid-state nanopores that selectively transport potassium ions and show negligible conductance for sodium ions. The nanopores contain walls decorated with 4′-aminobenzo-18-crown-6 ether and single-stranded DNA (ssDNA) molecules located at one pore entrance. The ionic selectivity stems from facilitated transport of potassium ions in the pore region containing crown ether, while the highly charged ssDNA plays the role of a cation filter. Achieving potassium selectivity in solid-state nanopores opens new avenues toward advanced separation processes, more efficient biosensing technologies, and novel biomimetic nanopore systems. 
    more » « less
  2. Potassium channels modulate various cellular functions through efficient and selective conduction of K + ions. The mechanism of ion conduction in potassium channels has recently emerged as a topic of debate. Crystal structures of potassium channels show four K + ions bound to adjacent binding sites in the selectivity filter, while chemical intuition and molecular modeling suggest that the direct ion contacts are unstable. Molecular dynamics (MD) simulations have been instrumental in the study of conduction and gating mechanisms of ion channels. Based on MD simulations, two hypotheses have been proposed, in which the four-ion configuration is an artifact due to either averaged structures or low temperature in crystallographic experiments. The two hypotheses have been supported or challenged by different experiments. Here, MD simulations with polarizable force fields validated by ab initio calculations were used to investigate the ion binding thermodynamics. Contrary to previous beliefs, the four-ion configuration was predicted to be thermodynamically stable after accounting for the complex electrostatic interactions and dielectric screening. Polarization plays a critical role in the thermodynamic stabilities. As a result, the ion conduction likely operates through a simple single-vacancy and water-free mechanism. The simulations explained crystal structures, ion binding experiments and recent controversial mutagenesis experiments. This work provides a clear view of the mechanism underlying the efficient ion conduction and demonstrates the importance of polarization in ion channel simulations. 
    more » « less
  3. In this manuscript, we report on the synthesis of a polynitrogen material from a potassium azide precursor using nanosecond-pulsed spark discharge plasma in liquid nitrogen. The polynitrogen material was characterized using Raman and Fourier transform infrared (FTIR) spectroscopy and identified as K2N6, with planar N6 rings and K- ions that have P6/mmm symmetry. An analysis of the mechanism behind such a transformation shows the importance of direct plasma–chemical effects in polymerization, while the crystal structure changes are believed to be due to plasma-emitted radiation in the ultraviolet range. 
    more » « less
  4. Single particle electrochemical oxidation of polyvinylpyrrolidone-capped silver nanoparticles at a microdisk electrode is investigated as a function of particle shape (spheres, cubes, and plates) in potassium nitrate and potassium hydroxide solutions. In potassium nitrate, extreme anodic potentials (≥1500 mV vs Ag/AgCl (3 M KCl)) are necessary to achieve oxidation, while lower anodic potentials are required in potassium hydroxide (≥900 mV vs Ag/AgCl (saturated KCl)). Upon oxidation, silver oxide is formed, readily catalyzing water oxidation, producing a spike-step current response. The spike duration for each particle is used to probe effects of particle shape on the oxidation mechanism, and is substantially shorter in nitrate solution at the large overpotentials than in hydroxide solution. The integration of current spikes indicates oxidation to a mixed-valence complex. In both electrolytes, the rate of silver oxidation strongly depends on silver content of the nanoparticles, rather than the shape-dependent variable–surface area. The step height, which reflects rate of water oxidation, also tracks the silver content more so than shape. The reactivity of less-protected citrate-capped particles toward silver oxidation is also compared with that of the polymer-capped particles under these anodic conditions in the nitrate and hydroxide solutions. 
    more » « less
  5. Potassium is used extensively as a promoter with iron catalysts in Fisher–Tropsch synthesis, water–gas shift reactions, steam reforming, and alcohol synthesis. In this paper, the identification of potassium chemical states on the surface of iron catalysts is studied to improve our understanding of the catalytic system. Herein, potassium-doped iron oxide (α-Fe2O3) nanomaterials are synthesized under variable calcination temperatures (400–800 °C) using an incipient wetness impregnation method. The synthesis also varies the content of potassium nitrate deposited on superfine iron oxide with a diameter of 3 nm (Nanocat®) to reach atomic ratios of 100 Fe:x K (x = 0–5). The structure, composition, and properties of the synthesized materials are investigated by X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, Fourier-transform infrared, Raman spectroscopy, inductively coupled plasma-atomic emission spectroscopy, and X-ray photoelectron spectroscopy, as well as transmission electron microscopy, with energy-dispersive X-ray spectroscopy and selected area electron diffraction. The hematite phase of iron oxide retains its structure up to 700 °C without forming any new mixed phase. For compositions as high as 100 Fe:5 K, potassium nitrate remains stable up to 400 °C, but at 500 °C, it starts to decompose into nitrites and, at only 800 °C, it completely decomposes to potassium oxide (K2O) and a mixed phase, K2Fe22O34. The doping of potassium nitrate on the surface of α-Fe2O3 provides a new material with potential applications in Fisher–Tropsch catalysis, photocatalysis, and photoelectrochemical processes. 
    more » « less