Abstract The chemical composition of growing media is a key factor for plant growth, impacting agricultural yield and sustainability. However, there is a lack of affordable chemical sensors for ubiquitous nutrient ion monitoring in agricultural applications. This work investigates using fully printed ion‐sensor arrays to measure the concentrations of nitrate, ammonium, and potassium in mixed‐electrolyte media. Ion sensor arrays composed of nitrate, ammonium, and potassium ion‐selective electrodes and a printed silver‐silver chloride (Ag/AgCl) reference electrode are fabricated and characterized in aqueous solutions in a range of concentrations that encompass what is typical for agricultural growing media (0.01 mm–1m). The sensors are also tested in mixed‐electrolyte solutions of NaNO3, NH4Cl, and KCl of varying concentrations, and the recorded potentials are input into Nernstian and artificial neural network models to compare the prediction accuracy of the models against ground truth. The artificial neural network models demonstrated higher accuracy over the Nernstian model, and the model using only ion‐sensor inputs is 7.5% more accurate than the Nernstian model under the same conditions. By enabling more precise and efficient fertilizer application, these sensor arrays coupled to computational models can help increase crop yields, optimize resource use, and reduce environmental impact.
more »
« less
Single Particle Electrochemical Oxidation of Polyvinylpyrrolidone-Capped Silver Nanospheres, Nanocubes, and Nanoplates in Potassium Nitrate and Potassium Hydroxide Solutions
Single particle electrochemical oxidation of polyvinylpyrrolidone-capped silver nanoparticles at a microdisk electrode is investigated as a function of particle shape (spheres, cubes, and plates) in potassium nitrate and potassium hydroxide solutions. In potassium nitrate, extreme anodic potentials (≥1500 mV vs Ag/AgCl (3 M KCl)) are necessary to achieve oxidation, while lower anodic potentials are required in potassium hydroxide (≥900 mV vs Ag/AgCl (saturated KCl)). Upon oxidation, silver oxide is formed, readily catalyzing water oxidation, producing a spike-step current response. The spike duration for each particle is used to probe effects of particle shape on the oxidation mechanism, and is substantially shorter in nitrate solution at the large overpotentials than in hydroxide solution. The integration of current spikes indicates oxidation to a mixed-valence complex. In both electrolytes, the rate of silver oxidation strongly depends on silver content of the nanoparticles, rather than the shape-dependent variable–surface area. The step height, which reflects rate of water oxidation, also tracks the silver content more so than shape. The reactivity of less-protected citrate-capped particles toward silver oxidation is also compared with that of the polymer-capped particles under these anodic conditions in the nitrate and hydroxide solutions.
more »
« less
- Award ID(s):
- 1808286
- PAR ID:
- 10366837
- Publisher / Repository:
- The Electrochemical Society
- Date Published:
- Journal Name:
- Journal of The Electrochemical Society
- Volume:
- 169
- Issue:
- 5
- ISSN:
- 0013-4651
- Page Range / eLocation ID:
- Article No. 056508
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Water is the ideal green solvent for organic electrosynthesis. However, a majority of electroorganic processes require potentials that lie beyond the electrochemical window for water. In general, water oxidation and reduction lead to poor synthetic yields and selectivity or altogether prohibit carrying out a desired reaction. Herein, we report several electroorganic reactions in water using synthetic strategies referred to as reductive oxidation and oxidative reduction. Reductive oxidation involves the homogeneous reduction of peroxydisulfate (S2O82–) via electrogenerated Ru(NH3)62+ at potential of –0.2 V vs. Ag/AgCl (3.5 M KCl) to form the highly oxidizing sulfate radical anion (E0′ (SO4•–/SO42–) = 2.21 V vs. Ag/AgCl), which is capable of oxidizing species beyond the water oxidation potential. Electrochemically generated SO4•– then efficiently abstracts a hydrogen atom from a variety of organic compounds such as benzyl alcohol and toluene to yield product in water. The reverse analogue of reductive oxidation is oxidative reduction. In this case, the homogeneous oxidation of oxalate (C2O42–) by electrochemically generated Ru(bpy)33+ produces the strongly reducing carbon dioxide radical anion (E0′ (CO2•–/CO2) = –2.1 V vs. Ag/AgCl), which is capable of reducing species at potential beyond the water or proton reduction potential. In preliminary studies, the CO2•– has used to homogenously reduce the C–Br moiety belonging to benzyl bromide at an oxidizing potential in aqueous solution.more » « less
-
We developed a method, by combining electrochemical and electrokinetic streaming current techniques to study ion distribution and ionic conductivity in the diffuse part of electrochemical double layer (EDL) of a metal-electrolyte interface, when potential is applied on the metal by a potentiostat. We applied this method to an electrochemically clean polycrystalline gold (poly Au)-electrolyte interface and measured zeta potential for various applied potentials, pH, and concentration of the electrolyte. Specific adsorption of chloride ions on poly Au was studied by comparing measurements of zeta potential in KCl and KClO4electrolytes. In absence of specific adsorption, zeta potential was found to increase linearly with applied potential, having slope of 0.04–0.06. When Cl−adsorption occurs, zeta potential changes the sign from positive to negative value at ∼750 mV vs Ag/AgCl applied potential. Complementary cyclic voltammetry and X-ray photoelectron spectroscopy studies were conducted to determine a degree of chloride ion adsorption on a poly Au. A correlation was observed between the applied potential at which zeta potential is zero and potential of zero charge for poly Au. Ion-distribution and ionic conductivity in the diffuse layer were calculated from the measured zeta potential data using nonlinear Poisson-Boltzmann distribution.more » « less
-
A reaction mechanism for plasma electrolysis of AgNO 3 forming silver nanoclusters and nanoparticlesIn plasma-driven solution electrolysis (PDSE), gas-phase plasma-produced species interact with an electrolytic solution to produce, for example, nanoparticles. An atmospheric pressure plasma jet (APPJ) directed onto a liquid solution containing a metallic salt will promote reduction of metallic ions in solution, generating metallic clusters that nucleate to form nanoparticles. In this article, results from a computational investigation are discussed of a PDSE process in which a radio-frequency APPJ sustained in helium impinges on a silver nitrate solution, resulting in growth of silver nanoparticles. A reaction mechanism was developed and implemented in a global plasma chemistry model to predict nanoparticle growth. To develop the reaction mechanism, density functional theory was used to generate probable silver growth pathways up to Ag 9 . Neutral clusters larger than Ag 9 were classified as nanoparticles. Kinetic reaction rate coefficients for thermodynamically favorable growth pathways were estimated based on an existing, empirically determined base reaction mechanism for smaller Ag particle interactions. These rates were used in conjunction with diffusion-controlled reaction rate coefficients that were calculated for other Ag species. The role of anions in reduction of Ag n ions in forming nanoparticles is also discussed. Oxygen containing impurities or admixtures to the helium, air entrainment into the APPJ, and dissociation of saturated water vapor above the solution can produce additional reactive oxygen species in solution, resulting in the production of anions and [Formula: see text] in particular. For a given molarity, delivering a sufficient fluence of reducing species will produce similar nanoparticle densities and sizes for all applied power levels. Comparisons are made to alternate models for nanoparticle formation, including charged nanoparticles and use of direct current plasmas.more » « less
-
Protein-functionalized nanoparticles introduce a potentially novel drug delivery method for medical therapeutics, including involvement in cancer therapies and as contrast agents in imaging. Gold and silver nanoparticles are of particular interest due to their distinctive properties. Extensive research shows that gold nanoparticles demonstrate incredible photothermal properties and non-toxic behavior, while silver nanoparticles exhibit antibacterial properties but increase toxicity for human use. However, little is known regarding the properties or applications of hybrid silver-gold particles. This study measured the UV-Vis absorbance spectrum for 40 nm diameter Au, streptavidin-conjugated Au, Ag@Au hybrid, Ag nanoparticles, and Transient Absorbance Spectra of Au. Analysis indicates that the hybrid particles exhibit characteristics of both Ag and Au particles, implying potential applications similar to both Ag and Au nanoparticles.more » « less
An official website of the United States government
