skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Pattern Recognition of Neurotransmitters: Complexity Reduction for Serotonin and Dopamine
In this work, we simultaneously detected and predicted the concentration levels of serotonin (SE) and dopamine (DA) neurotransmitters (NTs) for in vitro mixtures, with measurements obtained using conventional glassy carbon electrodes (CGCEs) and differential pulse voltammetry (DPV). The NTs were estimated by deconvolving the multiplexed signals of both NTs using Principal Component Analysis with Gaussian Process Regression (PCA-GPR) and Partial Least Squares with Gaussian Process Regression (PLS-GPR), both with exponential–isotropic kernels. The average testing accuracies of estimation using PCA-GPR for DA alone, SE alone and their mixture (DA–SE) were 87.6%, 88.1%, and 96.7%, respectively. Using PLS-GPR, the testing accuracies of estimation for DA alone, SE alone, and their mixture (DA–SE) were 87.3%, 83.8%, and 95.1%, respectively. Furthermore, we explored methods of reducing the procedural complexity in estimating the NTs by finding reduced subsets of features for accurately detecting and predicting their concentrations. The reduced subsets of features found in the oxidation potential windows of the NTs improved the testing accuracy of the estimation of DA–SE to 97.4%. We thus believe that reducing complexity has the potential to increase the detection and prediction accuracies of NT measurements for practical clinical uses such as deep brain stimulation.  more » « less
Award ID(s):
2042544
PAR ID:
10586160
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Biosensors -- https://www.mdpi.com/2079-6374/15/4/209
Date Published:
Journal Name:
Biosensors
Volume:
15
Issue:
4
ISSN:
2079-6374
Page Range / eLocation ID:
209
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Optimizing material compositions often enhances thermoelectric performances. However, the large selection of possible base elements and dopants results in a vast composition design space that is too large to systematically search using solely domain knowledge. To address this challenge, a hybrid data‐driven strategy that integrates Bayesian optimization (BO) and Gaussian process regression (GPR) is proposed to optimize the composition of five elements (Ag, Se, S, Cu, and Te) in AgSe‐based thermoelectric materials. Data is collected from the literature to provide prior knowledge for the initial GPR model, which is updated by actively collected experimental data during the iteration between BO and experiments. Within seven iterations, the optimized AgSe‐based materials prepared using a simple high‐throughput ink mixing and blade coating method deliver a high power factor of 2100 µW m−1K−2, which is a 75% improvement from the baseline composite (nominal composition of Ag2Se1). The success of this study provides opportunities to generalize the demonstrated active machine learning technique to accelerate the development and optimization of a wide range of material systems with reduced experimental trials. 
    more » « less
  2. Research on robotic lower-limb assistive devices over the past decade has generated autonomous, multiple degree-of-freedom devices to augment human performance during a variety of scenarios. However, the increase in capabilities of these devices is met with an increase in the complexity of the overall control problem and requirement for an accurate and robust sensing modality for intent recognition. Due to its ability to precede changes in motion, surface electromyography (EMG) is widely studied as a peripheral sensing modality for capturing features of muscle activity as an input for control of powered assistive devices. In order to capture features that contribute to muscle contraction and joint motion beyond muscle activity of superficial muscles, researchers have introduced sonomyography, or real-time dynamic ultrasound imaging of skeletal muscle. However, the ability of these sonomyography features to continuously predict multiple lower-limb joint kinematics during widely varying ambulation tasks, and their potential as an input for powered multiple degree-of-freedom lower-limb assistive devices is unknown. The objective of this research is to evaluate surface EMG and sonomyography, as well as the fusion of features from both sensing modalities, as inputs to Gaussian process regression models for the continuous estimation of hip, knee and ankle angle and velocity during level walking, stair ascent/descent and ramp ascent/descent ambulation. Gaussian process regression is a Bayesian nonlinear regression model that has been introduced as an alternative to musculoskeletal model-based techniques. In this study, time-intensity features of sonomyography on both the anterior and posterior thigh along with time-domain features of surface EMG from eight muscles on the lower-limb were used to train and test subject-dependent and task-invariant Gaussian process regression models for the continuous estimation of hip, knee and ankle motion. Overall, anterior sonomyography sensor fusion with surface EMG significantly improved estimation of hip, knee and ankle motion for all ambulation tasks (level ground, stair and ramp ambulation) in comparison to surface EMG alone. Additionally, anterior sonomyography alone significantly improved errors at the hip and knee for most tasks compared to surface EMG. These findings help inform the implementation and integration of volitional control strategies for robotic assistive technologies. 
    more » « less
  3. Abstract In the last several years, there has been a surge in the development of machine learning potential (MLP) models for describing molecular systems. We are interested in a particular area of this field — the training of system‐specific MLPs for reactive systems — with the goal of using these MLPs to accelerate free energy simulations of chemical and enzyme reactions. To help new members in our labs become familiar with the basic techniques, we have put together a self‐guided Colab tutorial (https://cc-ats.github.io/mlp_tutorial/), which we expect to be also useful to other young researchers in the community. Our tutorial begins with the introduction of simple feedforward neural network (FNN) and kernel‐based (using Gaussian process regression, GPR) models by fitting the two‐dimensional Müller‐Brown potential. Subsequently, two simple descriptors are presented for extracting features of molecular systems: symmetry functions (including the ANI variant) and embedding neural networks (such as DeepPot‐SE). Lastly, these features will be fed into FNN and GPR models to reproduce the energies and forces for the molecular configurations in a Claisen rearrangement reaction. 
    more » « less
  4. This study, data driven machine learning model was developed to estimate the partitioning of Per- and Poly-fluoroalkyl Substances (PFAS) compounds during aqueous adsorption on various adsorbent materials with a vision to potentially replace the time-consuming and labor-intensive adsorption experiments. Various regression models were trained and tested using previously published data. 290 data points and 170 data points for activated carbon and mineral adsorbents, respectively, were mined for training the models and 10 data points were used to test the trained models. Statistical parameters, such as Root-Mean-Square Error (RSME), R-Squared, Mean Average Error (MAE), Mean Squared Error (MSE), etc., were used to compare the regression models. It was found that rational quadratic GPR (R-squared = 0.9966) and fine regression tree (R-Squared = 0.9427) models had the highest estimation accuracy for carbon-based and mineral-based adsorbents, respectively. These models were then validated for prediction accuracy using 10 data points from previous studies as an outer test set. Rational quadratic GPR was able to achieve 99% prediction accuracy for carbon-based adsorbent, while fine tree regression model was able to achieve 94% prediction accuracy. Despite such high estimation accuracy, the data mining process revealed the data shortage and the need for more research on PFAS adsorption to present real-world models. This study, as one of the first, shed a light on the determination of key parameters in aquatic chemistry with data mining and machine learning approaches. 
    more » « less
  5. Accurately predicting the performance of radiant slab systems can be challenging due to the large thermal capacitance of the radiant slab and room temperature stratification. Current methods for predicting heating and cooling energy consumption of hydronic radiant slabs include detailed first-principles (e.g., finite difference) and reduced-order (e.g., thermal Resistor-Capacitor (RC) network) models. Creating and calibrating detailed first-principles models, as well as detailed RC network models for predicting the performance of radiant slabs require substantial effort. To develop improved control, monitoring, and diagnostic methods, there is a need for simpler models that can be readily trained using in-situ measurements. In this study, we explored a novel hybrid modeling method that integrates a simple RC network model with an evolving learning-based algorithm termed the Growing Gaussian Mixture Regression (GGMR) modeling approach to predict the heating and cooling rates of a radiant slab system for a Living Laboratory office space. The RC network model predicts heating or cooling load of the radiant slab system that is provided as an input to the GGMR model. Three modeling approaches were considered in this study: 1) an RC network model; 2) a GGMR model, and 3) the proposed hybrid modeling between RC and GGMR. The three modeling methods have been compared for predicting the energy use of a radiant slab system of a Living Laboratory office space using measurement data from January 15th to March 7th, 2022. The first two weeks of data were used for training, while the remaining data was used for testing of all three modeling methods. The hybrid approach had a Normalized Root Mean Square Error (NRMSE) of 15.46 percent (8.62 percent less than the RC-Model 3 alone and 19.36 percent less than the GGMR alone), a Coefficient of Variation of RMSE (CVRMSE) of 6.43 percent (3.59 percent less than the RC-Model 3 and 8.05 percent less than the GGMR), a Mean Absolute Error (MAE) of 3.61 kW (2.13 kW and 3.87 kW less than the RC-Model 3 and GGMR, respectively), and a Mean Absolute Percentage Error (MAPE) of 5.28 percent (3.85 percent and 3.92 percent lower than the RC-Model 3 and GGMR, respectively). 
    more » « less