skip to main content

Title: A Comparative Study on State Estimation Algorithms for Power Systems
The state estimation (SE) has been widely used in power system control centers to optimally estimate the states of the power grid in real time. Using different objective functions, many SE algorithms have been proposed to filter out measurement noise in different ways. In this paper, three widely-used SE algorithms, i.e., the weighted least squares (WLS), least absolute value (LAV), and projection statistics (PS) based algorithms, are compared in their estimation accuracy and computation time. The comparison was made using the simulation data generated from the IEEE 14-bus system and IEEE 118-bus system through the Monte-Carlo method. It is found that when the measurement noise is reasonably small and follows the independent Gaussian distribution, the WLS algorithm has the best accuracy and shortest computation time. When some measurements at leverage points were compromised by outliers, the PS based algorithm is the most robust among the three methods. The study results can be used to assist control centers in choosing the right SE algorithm based on the features of the measurement noise and setup.
Award ID(s):
Publication Date:
Journal Name:
2020 52nd North American Power Symposium (NAPS)
Sponsoring Org:
National Science Foundation
More Like this
  1. Concerning power systems, real-time monitoring of cyber–physical security, false data injection attacks on wide-area measurements are of major concern. However, the database of the network parameters is just as crucial to the state estimation process. Maintaining the accuracy of the system model is the other part of the equation, since almost all applications in power systems heavily depend on the state estimator outputs. While much effort has been given to measurements of false data injection attacks, seldom reported work is found on the broad theme of false data injection on the database of network parameters. State-of-the-art physics-based model solutions correct false data injection on network parameter database considering only available wide-area measurements. In addition, deterministic models are used for correction. In this paper, an overdetermined physics-based parameter false data injection correction model is presented. The overdetermined model uses a parameter database correction Jacobian matrix and a Taylor series expansion approximation. The method further applies the concept of synthetic measurements, which refers to measurements that do not exist in the real-life system. A machine learning linear regression-based model for measurement prediction is integrated in the framework through deriving weights for synthetic measurements creation. Validation of the presented model is performed onmore »the IEEE 118-bus system. Numerical results show that the approximation error is lower than the state-of-the-art, while providing robustness to the correction process. Easy-to-implement model on the classical weighted-least-squares solution, highlights real-life implementation potential aspects.« less
  2. Power system state estimation is an important component of the status and healthiness of the underlying electric power grid real-time monitoring. However, such a component is prone to cyber-physical attacks. The majority of research in cyber-physical power systems security focuses on detecting measurements False-Data Injection attacks. While this is important, measurement model parameters are also a most important part of the state estimation process. Measurement model parameters though, also known as static-data, are not monitored in real-life applications. Measurement model solutions ultimately provide estimated states. A state-of-the-art model presents a two-step process towards simultaneous false-data injection security: detection and correction. Detection steps are χ2 statistical hypothesis test based, while correction steps consider the augmented state vector approach. In addition, the correction step uses an iterative solution of a relaxed non-linear model with no guarantee of optimal solution. This paper presents a linear programming method to detect and correct cyber-attacks in the measurement model parameters. The presented bi-level model integrates the detection and correction steps. Temporal and spatio characteristics of the power grid are used to provide an online detection and correction tool for attacks pertaining the parameters of the measurement model. The presented model is implemented on the IEEE 118more »bus system. Comparative test results with the state-of-the-art model highlight improved accuracy. An easy-to-implement model, built on the classical weighted least squares solution, without hard-to-derive parameters, highlights potential aspects towards real-life applications.« less
  3. Sample entropy, an approximation of the Kolmogorov entropy, was proposed to characterize complexity of a time series, which is essentially defined as −log(B/A), where B denotes the number of matched template pairs with length m and A denotes the number of matched template pairs with m+1, for a predetermined positive integer m. It has been widely used to analyze physiological signals. As computing sample entropy is time consuming, the box-assisted, bucket-assisted, x-sort, assisted sliding box, and kd-tree-based algorithms were proposed to accelerate its computation. These algorithms require O(N2) or O(N2−1m+1) computational complexity, where N is the length of the time series analyzed. When N is big, the computational costs of these algorithms are large. We propose a super fast algorithm to estimate sample entropy based on Monte Carlo, with computational costs independent of N (the length of the time series) and the estimation converging to the exact sample entropy as the number of repeating experiments becomes large. The convergence rate of the algorithm is also established. Numerical experiments are performed for electrocardiogram time series, electroencephalogram time series, cardiac inter-beat time series, mechanical vibration signals (MVS), meteorological data (MD), and 1/f noise. Numerical results show that the proposed algorithm can gainmore »100–1000 times speedup compared to the kd-tree and assisted sliding box algorithms while providing satisfactory approximate accuracy.« less
  4. In this paper, a detection and localization technique based on dual State and Parameter Estimation (SE and PE respectively) for series dc arc faults is presented. Detection of series arc faults in dc microgrids is challenging due to its low fault current. By using the available set of sensor measurement data over a period of time, a Least Squares (LS) based SE algorithm estimates the dc microgrid's bus voltages and injection currents. Kalman Filter (KF) is then used to estimate the line conductances in the network, which are used to detect and localize (with respect to the faulted line) the series arc fault. Simulation results are presented with different case studies to demonstrate the robustness of the algorithm to normal operating conditions and different number and placement of sensors. Finally, Control Hardware in the Loop (CHIL) results are shown.
  5. In the modern power system networks, grid observability has greatly increased due to the deployment of various metering technologies. Such technologies enhanced the real-time monitoring of the grid. The collection of observations are processed by the state estimator in which many applications have relied on. Traditionally, state estimation on power grids has been done considering a centralized architecture. With grid deregulation, and awareness of information privacy and security, much attention has been given to multi-area state estimation. Considering such, state-of-the-art solutions consider a weighted norm of residual measurement model, which might hinder masked gross errors contained in the null-space of the Jacobian matrix. Towards the solution of this, a distributed innovation-based model is presented. Measurement innovation is used towards error composition. The measurement error is an independent random variable, where the residual is not. Thus, the masked component is recovered through measurement innovation. Model solution is obtained through an Alternating Direction Method of Multipliers (ADMM), which requires minimal information communication. The presented framework is validated using the IEEE 14 and IEEE 118 bus systems. Easy-to-implement model, build-on the classical weighted norm of the residual solution, and without hard-to-design parameters highlight potential aspects towards real-life implementation.