skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tsunami debris motion and loads in a scaled port setting: Comparative analysis of three state-of-the-art numerical methods against experiments
We present an international comparative analysis of simulated 3D tsunami debris hazards, applying three state-of-the-art numerical methods: the Material Point Method (MPM, ClaymoreUW, multi-GPU), Smoothed Particle Hydrodynamics (SPH, DualSPHysics, GPU), and Eulerian grid-based computational fluid dynamics (Simcenter STAR-CCM+, multi-CPU/GPU). Three teams, two from the United States and one from Germany, apply their unique expertise to shed light on the state of advanced tsunami debris modeling in both open source and professional software. A mutually accepted and meaningful benchmark is set as 1:40 Froude scale model experiments of shipping containers mobilized into and amidst a port setting with simplified and generic structures, closely related to the seminal Tohoku 2011 tsunami case histories which majorly affected seaports. A sophisticated wave flume at Waseda University in Tokyo, Japan, hosted the experiments as reported by Goseberget al. (2016b). Across dozens of trials, an elongated vacuum-chamber wave surges and spills over a generic harbor apron, mobilizing 3–6 hollow debris-modeling sea containers-, in 1–2 vertical layers against friction. One to two rows of 5 square obstacles are placed upstream or downstream of the debris, with widths and gaps of 0.66x and 2.2x of debris length, respectively. The work reports and compares results on the long wave generation from a vacuum-controlled tsunami wave maker, longitudinal displacement of debris forward and back, lateral spreading angle of debris, interactions of stacked debris, and impact forces measured with debris accelerometers and/or obstacle load-cells. Each team writes a foreword on their digital twin model, which are all open-sourced. Then, preliminary statistical analysis contrasts simulations originating off different numerical methods, and simulations with experiments. Afterward, team’s give value propositions for their numerical tool. Finally, a transparent cross-interrogation of results highlights the strengths of each respective method.  more » « less
Award ID(s):
2131111
PAR ID:
10586366
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Coastal engineering
Volume:
197
Issue:
2025
ISSN:
0378-3839
Subject(s) / Keyword(s):
STAR-CCM+ Debris–fluid–structure interaction
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This experimental project investigated the debris accumulation in front of structures during tsunamis (debris damming), which leads to an increase in the forces imposed by tsunami flow on structures. The study was conducted through the construction of a 1:20 geometric scale physical model. Tsunami-like waves were generated over an idealized slope and transported different shapes of multi-debris, representing shipping containers, over the flat test section to measure debris loadings on elevated column structures. The experiment optically measured the debris impact and damming process, along with the corresponding loads on the entire column structure using a Force Balance Plate and separately on an individual column in the front row using a load cell. This unique data set will help to understand the impact of various factors on debris-driven damming loads, including wave characteristics, specimen configurations, and debris shapes. This data will also help to develop and validate numerical models that predict the motion and dynamics of floating debris during extreme coastal events. This project is the outcome of “Collaborative Research: Experimental Quantification of Tsunami-driven Debris Damming on Structures” with collaborators from the University of Hawaii at Manoa, Louisiana State University, and Oregon State University. 
    more » « less
  2. SUMMARY Tsunami generation by offshore earthquakes is a problem of scientific interest and practical relevance, and one that requires numerical modelling for data interpretation and hazard assessment. Most numerical models utilize two-step methods with one-way coupling between separate earthquake and tsunami models, based on approximations that might limit the applicability and accuracy of the resulting solution. In particular, standard methods focus exclusively on tsunami wave modelling, neglecting larger amplitude ocean acoustic and seismic waves that are superimposed on tsunami waves in the source region. In this study, we compare four earthquake-tsunami modelling methods. We identify dimensionless parameters to quantitatively approximate dominant wave modes in the earthquake-tsunami source region, highlighting how the method assumptions affect the results and discuss which methods are appropriate for various applications such as interpretation of data from offshore instruments in the source region. Most methods couple a 3-D solid earth model, which provides the seismic wavefield or at least the static elastic displacements, with a 2-D depth-averaged shallow water tsunami model. Assuming the ocean is incompressible and tsunami propagation is negligible over the earthquake duration leads to the instantaneous source method, which equates the static earthquake seafloor uplift with the initial tsunami sea surface height. For longer duration earthquakes, it is appropriate to follow the time-dependent source method, which uses time-dependent earthquake seafloor velocity as a forcing term in the tsunami mass balance. Neither method captures ocean acoustic or seismic waves, motivating more advanced methods that capture the full wavefield. The superposition method of Saito et al. solves the 3-D elastic and acoustic equations to model the seismic wavefield and response of a compressible ocean without gravity. Then, changes in sea surface height from the zero-gravity solution are used as a forcing term in a separate tsunami simulation, typically run with a shallow water solver. A superposition of the earthquake and tsunami solutions provides an approximation to the complete wavefield. This method is algorithmically a two-step method. The complete wavefield is captured in the fully coupled method, which utilizes a coupled solid Earth and compressible ocean model with gravity. The fully coupled method, recently incorporated into the 3-D open-source code SeisSol, simultaneously solves earthquake rupture, seismic waves and ocean response (including gravity). We show that the superposition method emerges as an approximation to the fully coupled method subject to often well-justified assumptions. Furthermore, using the fully coupled method, we examine how the source spectrum and ocean depth influence the expression of oceanic Rayleigh waves. Understanding the range of validity of each method, as well as its computational expense, facilitates the selection of modelling methods for the accurate assessment of earthquake and tsunami hazards and the interpretation of data from offshore instruments. 
    more » « less
  3. Abstract The 1 January 2024, moment magnitude 7.5 Noto Peninsula earthquake ruptured in complex ways, challenging analysis of its tsunami generation. We present tsunami models informed by a 6‐subevent centroid moment tensor (CMT) model obtained through Bayesian inversion of teleseismic and strong motion data. We identify two distinct bilateral rupture episodes. Initial, onshore rupture toward the southwest is followed by delayed re‐nucleation at the hypocenter, likely aided by fault weakening, causing significant seafloor uplift to the northeast. We construct a complex multi‐fault uplift model, validated against geodetic observations, that aligns with known fault system geometries and is critical in modeling the observed tsunami. The simulations can explain tsunami wave amplitude, timing, and polarity of the leading wave, which are crucial for tsunami early warning. Upon comparison with alternative source models and analysis of 2000 multi‐CMT ensemble solutions, we highlight the importance of incorporating complex source effects for realistic tsunami simulations. 
    more » « less
  4. Tsunami overland flow induces hydrodynamic loads on coastal structures and may transport various objects located within the inundation zone, which could become debris and exacerbate hydrodynamic loading. In the process of adopting “the first national, consensus-based standard for tsunami resilience” (Chock, 2016) in the form of ASCE 7-16 Chapter 6: Tsunami Loads and Effects, emphasis was placed on evaluating debris transport and impact forces. This is evidenced by the robust body of literature regarding physical model experiments of these processes and thorough design procedures for both load considerations in current structural engineering standards (ASCE, 2022). Debris damming forces, resultant of debris being transported and accumulating against structures, are less thoroughly studied, having only recently begun to transition from steady flow experiments to transient flow conditions representative of coastal inundation events. A recent pair of experiments bridges this gap, comparing debris damming via steady-state, subcritical flow conditions to that caused by a dam-break style hydraulic bore (Stolle et al., 2018). That paper aimed to study debris dam formation, stability, and loading as well as runup of the flow onto idealized structural columns. Another study varied debris quantity, orientation, and arrangement to determine the effect had on damming and impact loads (Shekhar et al., 2020), however neither compared findings to current standards. The experimental work presented herein represents initial findings of a multi-year experimental campaign to better understand the mechanisms that lead to debris damming and increased structural loading. This work builds upon previous studies by using larger scale debris elements, more numerous debris fields, and more trials to better model such a stochastic process as debris damming. Three different incident wave conditions also led to varied hydrodynamics at the column specimen. In later phases, this campaign will also investigate the debris damming consequences of heterogeneous debris, which more accurately represent highly variable debris fields observed in post-event site surveys (Nistor et al., 2017). This paper aims to compare experimental debris dam loading parameters to those in the current ASCE 7-22 standard (ASCE, 2022). Namely, evaluating conservatism of ASCE 7-22 design values for: overall drag force on buildings, minimum closure ratios used in load determination, and empirical rectilinear structure drag coefficients during both debris accumulation and quasi-steady debris damming phases. 
    more » « less
  5. The January 1st, 2024, moment magnitude (Mw) 7.5 Noto Peninsula earthquake ruptured in complex ways, challenging timely analysis of the tsunami generation. We present rapid and accurate tsunami models informed by a 6-subevent centroid moment tensor (CMT) model that we obtain by inverting teleseismic and strong motion data and validation against geodetic observations. We identify two distinct bilateral rupture episodes, including six subevents and a re-nucleation episode at its hypocenter 20 seconds after its initiation, likely aided by fault weakening. We construct a complex uplift model that aligns with known fault system geometries and is critical in modeling the observed tsunami. Our tsunami simulation can explain wave amplitude, timing, and polarity of the leading wave, which are crucial for tsunami early warning. Analyzing a 2000 multi-CMT solution ensemble and comparing to alternative rapid source models, we highlight the importance of incorporating complex source effects for realistic tsunami simulations. 
    more » « less