skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: HeliosFair: Fair Sharing of Solar Energy Costs in Communities
As solar electricity has become cheaper than the retail electricity price, residential consumers are trying to reduce costs by meeting more demand using solar energy. One way to achieve this is to invest in the solar infrastructure collaboratively. When houses form a coalition, houses with high solar potential or surplus roof capacity can install more panels and share the generated solar energy with others, lowering the total cost. Fair sharing of the resulting cost savings across the houses is crucial to prevent the coalition from breaking. However, estimating the fair share of each house is complex as houses contribute different amounts of generation and demand in the coalition, and rooftop solar generation across houses with similar roof capacities can vary widely. In this paper, we present HeliosFair, a system that minimizes the total electricity costs of a community that shares solar energy and then uses Shapley values to fairly distribute the cost savings thus obtained. Using real-world data, we show that the joint CapEx and OpEx electricity costs of a community sharing solar can be reduced by 12.7% on average (11.3% on average with roof capacity constraints) over houses installing solar energy individually. Our Shapley-value-based approach can fairly distribute these savings across houses based on their contributions towards cost reduction, while commonly used ad hoc approaches are unfair under many scenarios. HeliosFair is also the first work to consider practical constraints such as the difference in solar potential across houses, rooftop capacity and weight of solar panels, making it deployable in practice.  more » « less
Award ID(s):
2105494 2325956 2213636
PAR ID:
10586640
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400707063
Page Range / eLocation ID:
164 to 168
Format(s):
Medium: X
Location:
Hangzhou China
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Residential solar installations are becoming increasingly popular among homeowners. However, renters and homeowners living in shared buildings cannot go solar as they do not own the shared spaces. Community-owned solar arrays and energy storage have emerged as a solution, which enables ownership even when they do not own the property or roof. However, such community-owned systems do not allow individuals to control their share for optimizing a home’s electricity bill. To overcome this limitation, inspired by the concept of virtualization in operating systems, we propose virtual community-owned solar and storage—a logical abstraction to allow individuals to independently control their share of the system. We argue that such individual control can benefit all owners and reduce their reliance on grid power. We present mechanisms and algorithms to provide a virtual solar and battery abstraction to users and understand their cost benefits. In doing so, our comparison with a traditional community-owned system shows that our AutoShare approach can achieve the same global savings of 43% while providing independent control of the virtual system. Further, we show that independent energy sharing through virtualization provides an additional 8% increase in savings to individual owners. 
    more » « less
  2. We analyze 36 years of global, hourly weather data (1980–2015) to quantify the covariability of solar and wind resources as a function of time and location, over multi-decadal time scales and up to continental length scales. Assuming minimal excess generation, lossless transmission, and no other generation sources, the analysis indicates that wind-heavy or solar-heavy U.S.-scale power generation portfolios could in principle provide ∼80% of recent total annual U.S. electricity demand. However, to reliably meet 100% of total annual electricity demand, seasonal cycles and unpredictable weather events require several weeks’ worth of energy storage and/or the installation of much more capacity of solar and wind power than is routinely necessary to meet peak demand. To obtain ∼80% reliability, solar-heavy wind/solar generation mixes require sufficient energy storage to overcome the daily solar cycle, whereas wind-heavy wind/solar generation mixes require continental-scale transmission to exploit the geographic diversity of wind. Policy and planning aimed at providing a reliable electricity supply must therefore rigorously consider constraints associated with the geophysical variability of the solar and wind resource—even over continental scales. 
    more » « less
  3. With the increasing implementation of solar photovoltaic (PV) systems, comprehensive methods and tools are required to dynamically assess their economic and environmental costs and benefits under varied spatial and temporal contexts. This study integrated system dynamics modeling with life cycle assessment and life cycle cost assessment to evaluate the cumulative energy demand, carbon footprint, water footprint, and life cycle cost of residential grid-connected (GC) and standalone (SA) solar PV systems. The system dynamics model was specifically used for simulating the hourly solar energy generation, use, and storage during the use phase of the solar PVs. The modeling framework was then applied to a residential prototype house in Boston, MA to investigate various PV panel and battery sizing scenarios. When the SA design is under consideration, the maximum life cycle economic saving can be achieved with 20 panels with no battery in the prototype house, which increases the life cycle economic savings by 511.6% as compared to a baseline system sized based upon the engineering rule-of-thumb (40 panels and 40 batteries), yet decreases the demand met by 55.7%. However, the optimized environmental performance was achieved with significantly larger panel (up to 300 units) and battery (up to 320 units) sizes. These optimized configurations increase the life cycle environmental savings of the baseline system byup to 64.6%, but significantly decrease the life cycle economic saving by up to 6868.4%. There is a clear environmental and economic tradeoff when sizing the SA systems. When the GC system design is under consideration, both the economic and environmental benefits are the highest when no battery is installed, and the benefits increase with the increase of panel size. However, when policy constraints such as limitations/caps of grid sell are in place, tradeoffs would present as whether or not to install batteries for excess energy storage. 
    more » « less
  4. The rapid expansion of intermittent grid-tied solar capacity is making the job of balancing electricity's real-time supply and demand increasingly challenging. To address the problem, recent work proposes mechanisms for actively controlling solar power output to the grid by enabling software to cap it as a fraction of its time-varying maximum output. Utilities can use these mechanisms to dynamically share the grid's solar capacity by controlling the solar output at each site. However, while enforcing an equal fraction of each solar site's time-varying maximum output results in "fair" short-term contributions of solar power, it does not result in "fair" long-term contributions of solar energy. This discrepancy arises from fundamental differences in enforcing "fair" access to the grid to contribute solar energy, compared to analogous fair-sharing in networks and processors. In this paper, we present a centralized and distributed algorithm to enable control of distributed solar capacity that enforces fair grid energy access. We implement our algorithm and evaluate it on synthetic data and real data across 18 solar sites. We show that traditional rate allocation, which enforces equal rates, results in solar sites contributing up to 18.9% less energy than an algorithm that enforces fair grid energy access over a single month. 
    more » « less
  5. Distribution networks, with large-scale integration of distributed renewable resources, particularly rooftop solar photovoltaic systems, represent the most extensive yet vulnerable components of modern electric power systems during climate extremes such as hurricanes. However, existing day-ahead electricity dispatch approaches primarily focus on the transmission network and lack the capability to manage the spatiotemporal risks associated with the vast distribution networks, which can potentially lead to significant power imbalances due to the mismatches between scheduled generation and actual demand. To address this increasingly critical gap under intensifying climate extremes and growing distributed renewable integration, we introduce Risk-aware Electricity Dispatch under Climate Extremes with Renewable integration (REDUCER), a risk-aware day-ahead electricity dispatch model that incorporates high-resolution spatiotemporal risk analysis for distribution networks with large-scale distributed renewable integration into an Entropic Value-at-Risk-constrained mixed-integer convex optimization framework. Applied to the 2022 Puerto Rico power grid under Hurricane Fiona, the proposed REDUCER model is seen to effectively manage these risks with substantially less reliance on additional flexibility resources to cope with power imbalances, reducing overall operational costs by about 30% under extreme cases compared to standard unit commitment strategies already informed by average demand loss. Also, the proposed REDUCER model consistently demonstrates its effectiveness in managing the increasing temporal net demand variability introduced by growing large-scale distributed solar integration while maintaining minimal operational costs. This model offers a practical solution for cost-effective and resilient electricity dispatch of modern power systems with large-scale renewable integration facing intensifying climate risks. 
    more » « less