Since many residential locations are unsuitable for solar deployments due to space constraints, community-owned solar arrays with energy storage that are collectively shared by a group of homes have emerged as a solution. However, such a group-owned system does not allow individual control over how the electricity generation from the solar array and energy stored in the battery is used for optimizing a home's electricity bill. To overcome this limitation, we propose vSolar, a technique that virtualizes community solar and battery arrays such that each virtual system can be independently controlled, regardless of others. Further, we present mechanisms and algorithms that allow homes with surplus energy to lend to homes with deficit energy.
more »
« less
AutoShare: Virtual community solar and storage for energy sharing
Abstract Residential solar installations are becoming increasingly popular among homeowners. However, renters and homeowners living in shared buildings cannot go solar as they do not own the shared spaces. Community-owned solar arrays and energy storage have emerged as a solution, which enables ownership even when they do not own the property or roof. However, such community-owned systems do not allow individuals to control their share for optimizing a home’s electricity bill. To overcome this limitation, inspired by the concept of virtualization in operating systems, we propose virtual community-owned solar and storage—a logical abstraction to allow individuals to independently control their share of the system. We argue that such individual control can benefit all owners and reduce their reliance on grid power. We present mechanisms and algorithms to provide a virtual solar and battery abstraction to users and understand their cost benefits. In doing so, our comparison with a traditional community-owned system shows that our AutoShare approach can achieve the same global savings of 43% while providing independent control of the virtual system. Further, we show that independent energy sharing through virtualization provides an additional 8% increase in savings to individual owners.
more »
« less
- PAR ID:
- 10274552
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Energy Informatics
- Volume:
- 4
- Issue:
- 1
- ISSN:
- 2520-8942
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As solar electricity has become cheaper than the retail electricity price, residential consumers are trying to reduce costs by meeting more demand using solar energy. One way to achieve this is to invest in the solar infrastructure collaboratively. When houses form a coalition, houses with high solar potential or surplus roof capacity can install more panels and share the generated solar energy with others, lowering the total cost. Fair sharing of the resulting cost savings across the houses is crucial to prevent the coalition from breaking. However, estimating the fair share of each house is complex as houses contribute different amounts of generation and demand in the coalition, and rooftop solar generation across houses with similar roof capacities can vary widely. In this paper, we present HeliosFair, a system that minimizes the total electricity costs of a community that shares solar energy and then uses Shapley values to fairly distribute the cost savings thus obtained. Using real-world data, we show that the joint CapEx and OpEx electricity costs of a community sharing solar can be reduced by 12.7% on average (11.3% on average with roof capacity constraints) over houses installing solar energy individually. Our Shapley-value-based approach can fairly distribute these savings across houses based on their contributions towards cost reduction, while commonly used ad hoc approaches are unfair under many scenarios. HeliosFair is also the first work to consider practical constraints such as the difference in solar potential across houses, rooftop capacity and weight of solar panels, making it deployable in practice.more » « less
-
null (Ed.)The number of people who own a virtual reality (VR) head-mounted display (HMD) has reached a point where researchers can readily recruit HMD owners to participate remotely using their own equipment. However, HMD owners recruited online may differ from the university community members who typically participate in VR research. HMD owners (n=220) and non-owners (n=282) were recruited through two online work sites-Amazon's Mechanical Turk and Prolific-and an undergraduate participant pool. Participants completed a survey in which they provided demographic information and completed measures of HMD use, video game use, spatial ability, and motion sickness susceptibility. In the context of the populations sampled, the results provide 1) a characterization of HMD owners, 2) a snapshot of the most commonly owned HMDs, 3) a comparison between HMD owners and non-owners, and 4) a comparison among online workers and undergraduates. Significant gender differences were found: men reported lower motion sickness susceptibility and more video game hours than women, and men outperformed women on spatial tasks. Men comprised a greater proportion of HMD owners than non-owners, but after accounting for this imbalance, HMD owners did not differ appreciably from non-owners. Comparing across recruitment platform, male undergraduates outperformed male online workers on spatial tests, and female undergraduates played fewer video game hours than female online workers. The data removal rate was higher from Amazon compared to Prolific, possibly reflecting greater dishonesty. These results provide a description of HMD users that can inform researchers recruiting remote participants through online work sites. These results also signal a need for caution when comparing in-person VR research that primarily enrolls undergraduates to online VR research that enrolls online workers.more » « less
-
We developed “MiSu” an Android and iOS app that allows smart home homeowners to share their devices (e.g., Ring doorbell, security alarm, smart door lock, smart light bulb) with people outside of their home to control what, when, and how they can engage with the smart devices. MiSu provides options for fine-grain access control, the ability for guests to control smart homes using their own device and login, and provides homeowners real-time logs where they can view all actions taken by guests invited to interact with their smart homes.more » « less
-
Abstract As the United States phases out traditional fossil fuels in favor of renewable energy sources, it is important to capitalize on all available avenues to increase renewable penetration. In the last decade, the costs associated with residential solar photovoltaic (PV) installations have decreased significantly, providing more homeowners with the opportunity to generate their own clean electricity. Research has found that the decision to invest in a residential solar PV system is guided by economic, social, and personal factors. Accounting for such complexities, the joint power of agent-based modeling and social network analysis is leveraged in this study to evaluate the effect of social influence on solar PV adoption. Featuring residential consumer agents with data-driven attributes, a logistic regression function to predict solar adoption, and random and small-world social network implementations, this work simulates residential solar PV adoption in New Jersey. Results indicate that including social influence in an agent-based electricity system model leads to increased installed residential solar capacity, but not necessarily higher adoption rates. These findings suggest that, with an understanding of the intricacies of consumer social networks, there are potential opportunities to bolster residential solar installations through low-cost social campaigns that motivate individuals to adopt home solar through their social ties.more » « less
An official website of the United States government
