skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Life Cycle Transitions in the Freshwater Jellyfish Craspedacusta sowerbii
Craspedacusta sowerbii is an invasive hydrozoan found globally in freshwater habitats. C. sowerbii has a complex life cycle that includes benthic, pelagic, dispersal and dormant stages. The distribution of the medusa (jellyfish) stage has been well documented, but little is known about the other life cycle stages, which are suggested to be more widespread. In addition, the conditions required for growth, reproduction and dispersal of the different life cycle stages, as well as the environmental cues that regulate life cycle transitions, are not fully understood. The aim of this study was to determine laboratory conditions for growth of, and transition to, different life cycle stages in order to improve our ability to culture all life cycle stages of C. sowerbii. In addition, insight into the environmental triggers that promote life cycle transitions will enable us to better predict the potential negative effects C. sowerbii could impose on freshwater ecosystems.  more » « less
Award ID(s):
2153774
PAR ID:
10586713
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
MDPI Biology
Volume:
13
Issue:
12
ISSN:
2079-7737
Page Range / eLocation ID:
1069
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Evolutionary transitions of organisms between environments have long fascinated biologists, but attention has been focused almost exclusively on free-living organisms and challenges to achieve such transitions. This bias requires addressing because parasites are a major component of biodiversity. We address this imbalance by focusing on transitions of parasitic animals between marine and freshwater environments. We highlight parasite traits and processes that may influence transition likelihood (e.g., transmission mode, life cycle, host use), and consider mechanisms and directions of transitions. Evidence for transitions in deep time and at present are described, and transitions in our changing world are considered. We propose that environmental transitions may be facilitated for endoparasites because hosts reduce exposure to physiologically challenging environments and argue that adoption of an endoparasitic lifestyle entails an equivalent transitioning process as organisms switch from living in one environment (e.g., freshwater, seawater, or air) to living symbiotically within hosts. Environmental transitions of parasites have repeatedly resulted in novel forms and diversification, contributing to the tree of life. Recognizing the potential processes underlying present-day and future environmental transitions is crucial in view of our changing world and the current biodiversity crisis. 
    more » « less
  2. Abstract Development can play a critical role in how organisms respond to changes in the environment. Tolerance to environmental challenges can vary during ontogeny, with individual- and population-level impacts that are associated with the timing of exposure relative to the timing of vulnerability. In addition, the life history consequences of different stressors can vary with the timing of exposure to stress. Salinization of freshwater ecosystems is an emerging environmental concern, and habitat salinity can change rapidly due, for example, to storm surge, runoff of road deicing salts, and rainfall. Elevated salinity can increase the demands of osmoregulation in freshwater organisms, and amphibians are particularly at risk due to their permeable skin and, in many species, semi-aquatic life cycle. In three experiments, we manipulated timing and duration of exposure to elevated salinity during larval development of southern toad (Anaxyrus terrestris) tadpoles and examined effects on survival, larval growth, and timing of and size at metamorphosis. Survival was reduced only for tadpoles exposed to elevated salinity early in development, suggesting an increase in tolerance as development proceeds; however, we found no evidence of acclimation to elevated salinity. Two forms of developmental plasticity may help to ameliorate costs of transient salinity exposure. With early salinity exposure, the return to freshwater was accompanied by a period of rapid compensatory growth, and metamorphosis ultimately occurred at a similar age and size as freshwater controls. By contrast, salinity exposure later in development led to earlier metamorphosis at reduced size, indicating an acceleration of metamorphosis as a mechanism to escape salinity stress. Thus, the consequences of transient salinity exposure were complex and were mediated by developmental state. Salinity stress experienced early in development resulted in acute costs but little long-lasting effect on survivors, while exposures later in development resulted in sublethal effects that could influence success in subsequent life stages. Overall, our results suggest that elevated salinity is more likely to affect southern toad larvae when experienced early during larval development, but even brief sublethal exposure later in development can alter life history in ways that may impact fitness. 
    more » « less
  3. Abstract To date, most research on cyanobacterial blooms in freshwater lakes has focused on the pelagic life stage. However, examining the complete cyanobacterial life cycle—including benthic life stages—may be needed to accurately predict future bloom dynamics. The current expectation, derived from the pelagic life stage, is that blooms will continue to increase due to the warmer temperatures and stronger stratification associated with climate change. However, stratification and mixing have contrasting effects on different life stages: while pelagic cyanobacteria benefit from strong stratification and are adversely affected by mixing, benthic stages can benefit from increased mixing. The net effects of these potentially counteracting processes are not yet known, since most aquatic ecosystem models do not incorporate benthic stages and few empirical studies have tracked the complete life cycle over multiple years. Moreover, for many regions, climate models project both stronger stratification and increased storm-induced mixing in the coming decades; the net effects of those physical processes, even on the pelagic life stage, are not yet understood. We therefore recommend an integrated research agenda to study the dual effects of stratification and mixing on the complete cyanobacterial life cycle—both benthic and pelagic stages—using models, field observations and experiments. 
    more » « less
  4. Hug, Laura A. (Ed.)
    ABSTRACT Secondary metabolite clusters (SMCs) encode the machinery for fungal toxin production. However, understanding their function and analyzing their products requires investigation of the developmental and environmental conditions in which they are expressed. Gene expression is often restricted to specific and unexamined stages of the life cycle. Therefore, we applied comparative genomics analyses to identify SMCs in Neurospora crassa and analyzed extensive transcriptomic data spanning nine independent experiments from diverse developmental and environmental conditions to reveal their life cycle-specific gene expression patterns. We reported 20 SMCs comprising 177 genes—a manageable set for investigation of the roles of SMCs across the life cycle of the fungal model N. crassa —as well as gene sets coordinately expressed in 18 predicted SMCs during asexual and sexual growth under three nutritional and two temperature conditions. Divergent activity of SMCs between asexual and sexual development was reported. Of 126 SMC genes that we examined for knockout phenotypes, al-2 and al-3 exhibited phenotypes in asexual growth and conidiation, whereas os-5 , poi-2 , and pmd-1 exhibited phenotypes in sexual development. SMCs with annotated function in mating and crossing were actively regulated during the switch between asexual and sexual growth. Our discoveries call for attention to roles that SMCs may play in the regulatory switches controlling mode of development, as well as the ecological associations of those developmental stages that may influence expression of SMCs. IMPORTANCE Secondary metabolites (SMs) are low-molecular-weight compounds that often mediate interactions between fungi and their environments. Fungi enriched with SMs are of significant research interest to agriculture and medicine, especially from the aspects of pathogen ecology and environmental epidemiology. However, SM clusters (SMCs) that have been predicted by comparative genomics alone have typically been poorly defined and insufficiently functionally annotated. Therefore, we have investigated coordinate expression in SMCs in the model system N. crassa , and our results suggest that SMCs respond to environmental signals and to stress that are associated with development. This study examined SMC regulation at the level of RNA to integrate observations and knowledge of these genes in various growth and development conditions, supporting combining comparative genomics and inclusive transcriptomics to improve computational annotation of SMCs. Our findings call for detailed study of the function of SMCs during the asexual-sexual switch, a key, often-overlooked developmental stage. 
    more » « less
  5. Abstract As a key ingredient of batteries for electric vehicles (EVs), lithium plays a significant role in climate change mitigation, but lithium has considerable impacts on water and society across its life cycle. Upstream extraction methods—including open‐pit mining, brine evaporation, and novel direct lithium extraction (DLE)—and downstream processes present different impacts on both the quantity and quality of water resources, leading to water depletion and contamination. Regarding upstream extraction, it is critical for a comprehensive assessment of lithium's life cycle to include cumulative impacts related not only to freshwater, but also mineralized or saline groundwater, also known as brine. Legal frameworks have obscured social and ecological impacts by treating brine as a mineral rather than water in regulation of lithium extraction through brine evaporation. Analysis of cumulative impacts across the lifespan of lithium reveals not only water impacts in conventional open‐pit mining and brine evaporation, but also significant freshwater needs for DLE technologies, as well as burdens on fenceline communities related to wastewater in processing, chemical contaminants in battery manufacturing, water use for cooling in energy storage, and water quality hazards in recycling. Water analysis in lithium life cycle assessments (LCAs) tends to exclude brine and lack hydrosocial context on the environmental justice implications of water use by life cycle stage. New research directions might benefit from taking a more community‐engaged and cradle‐to‐cradle approach to lithium LCAs, including regionalized impact analysis of freshwater use in DLE, as well as wastewater pollution, cooling water, and recycling hazards from downstream processes. This article is categorized under:Human Water > Human WaterHuman Water > Water GovernanceHuman Water > Water as Imagined and RepresentedScience of Water > Water and Environmental Change 
    more » « less