skip to main content


Title: Physically intuitive continuum mechanics model for quartz crystal microbalance: Viscoelasticity of rubbery polymers at MHz frequencies
Abstract

Employing a quartz crystal microbalance (QCM) as a MHz‐viscoelastic sensor requires extracting information from higher harmonics beyond the Sauerbrey limit, which can be problematic for rubbery polymer films that are highly dissipative because of the onset of anharmonic side bands and film resonance. Data analysis for QCM can frequently obscure the underlying physics or involve approximations that tend to break down at higher harmonics. In this study, modern computational tools are leveraged to solve a continuum physics model for the QCM's acoustic shear wave propagation through a polymer film with zero approximations, retaining the physical intuition of how the experimental signal connects to the shear modulus of the material. The resulting set of three coupled equations are solved numerically to fit experimental data for the resonance frequency Δfnand dissipation ΔΓnshifts as a function of harmonic numbern, over an extended harmonic range approaching film resonance. This allows the frequency‐dependent modulus of polymer films at MHz frequencies, modeled as linear on a log–log scale, to be determined for rubbery polybutadiene (PB) and polydimethylsiloxane (PDMS) films, showing excellent agreement with time–temperature shifted rheometry data from the literature.

 
more » « less
Award ID(s):
1905782
PAR ID:
10447449
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science
Volume:
60
Issue:
2
ISSN:
2642-4150
Page Range / eLocation ID:
p. 244-257
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The utility of the quartz crystal microbalance (QCM) as a high‐frequency rheometer operating at 15 MHz was demonstrated. High‐frequency data obtained from a series of rubbery materials were compared with results obtained from traditional dynamic mechanical analysis (DMA) at much lower frequencies. The high‐frequency data enable meaningful shift factors to be obtained at temperatures much further above glass‐transition temperature (Tg) than would otherwise be possible, giving a more complete picture of the temperature dependence of the viscoelastic properties. The QCM can also be used to quantify mass uptake and changes in viscoelastic properties during sample oxidation. The viscoelastic response spanning the full range of behaviors from the rubber to glassy regimes was found to fit well with a six‐element model consisting of three power‐law springpot elements. One of these elements is particularly sensitive to the behavior in the transition regime where the phase angle is maximized. The value of this quantity is obtained from the maximum phase angle, which can be obtained from a temperature sweep at fixed frequency, proving a means for more detailed frequency‐dependent rheometric information to be obtained from a fixed‐frequency measurement at a range of temperatures. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 1246–1254

     
    more » « less
  2. Abstract

    Quartz crystal microbalance with dissipation (QCM‐D) monitoring is a powerful tool used to sensitively examine the real‐time responses of polymer films to external responses. For example, the technique is commonly used to monitor film growth, material adsorption, thin film swelling, and ion exchange. With its rapidly expanding use, this review is intended to introduce new users to the basic principles of QCM‐D, along with practical challenges and remedies specific to polymer thin films. For both new and experienced users, specific case studies are highlighted including layer‐by‐layer assembly, electrochemical QCM‐D, swelling, sensing, and biological application. Last, the review recommends future directions for research and areas of growth.

     
    more » « less
  3. Multilayer polymer films are extensively used in multiphase separation. Electrospray deposition (ESD) is an important technique for fabricating such films with tunable morphology. Viscoelastic properties of polystyrene (PS) nanoshell coatings produced by ESD on gold and spin‐coated PS surfaces are evaluated using Quartz Crystal Microbalance with Dissipation (QCM‐D). The thickness of PS films on gold increases with flow rate from ∼200 nm at 0.5 to ∼400 nm at 1.5 mL h^−1, accompanied by an order‐of‐magnitude increase in dissipation due to larger particle sizes from shorter droplet flight times. This effect is absent on spin–coated PS films, suggesting the onset of the self‐limiting effect of charges. Although the shear moduli for ESD films calculated from Voigt models is only 0.08%–0.20% of the bulk PS modulus, the stiffness ratio of spray‐coated PS to a single shell is (5.00–13.3) × 10^3  m^−1, due to shell–shell and shell–substrate interactions. These are novel results related to the interparticle friction obtained using QCM‐D for the first time. This work demonstrates  that mechanical properties of particulate viscoelastic films with potential applications in high surface area sensors, such as size‐selective membranes for protein or electrolyte adsorption, can be evaluated by QCM‐D with nanograms of material. 
    more » « less
  4. Abstract

    A knowledge-based understanding of the plasma-surface-interaction with the aim to precisely control (reactive) sputtering processes for the deposition of thin films with tailored and reproducible properties is highly desired for industrial applications. In order to understand the effect of plasma parameter variations on the film properties, a single plasma parameter needs to be varied, while all other process and plasma parameters should remain constant. In this work, we use the Electrical Asymmetry Effect in a multi-frequency capacitively coupled plasma to control the ion energy at the substrate without affecting the ion-to-growth flux ratio by adjusting the relative phase between two consecutive driving harmonics and their voltage amplitudes. Measurements of the ion energy distribution function and ion flux at the substrate by a retarding field energy analyzer combined with the determined deposition rateRdfor a reactive Ar/N2(8:1) plasma at 0.5 Pa show a possible variation of the mean ion energy at the substrateEmigwithin a range of 38 and 81 eV that allows the modification of the film characteristics at the grounded electrode, when changing the relative phase shiftθbetween the applied voltage frequencies, while the ion-to-growth flux ratio Γiggrcan be kept constant. AlN thin films are deposited and exhibit an increase in compressive film stress from −5.8 to −8.4 GPa as well as an increase in elastic modulus from 175 to 224 GPa as a function of the mean ion energy. Moreover, a transition from the preferential orientation (002) at low ion energies to the (100), (101) and (110) orientations at higher ion energies is observed. In this way, the effects of the ion energy on the growing film are identified, while other process relevant parameters remain unchanged.

     
    more » « less
  5. ABSTRACT

    The properties of thin supported polymer films can be dramatically impacted by the substrate upon which it resides. A simple way to alter the properties of the substrate (chemistry, rigidity, dynamics) is by coating it with an immiscible polymer. Here, we describe how ultrathin (ca. 2 nm) hydrophilic polymer layers of poly(acrylic acid) and poly(styrene sulfonate) (PSS) impact the aging behavior and the residual stress in thin films of poly(butylnorbornene‐ran‐hydroxyhexafluoroisopropyl norbornene) (BuNB‐r‐HFANB). The aging rate decreases as the film thickness (h) is decreased, but the extent of this change depends on the adjacent layer. Even for the thickest films (h > 500 nm), there is a decrease in the aging rate at 100 °C when BuNB‐r‐HFANB is in contact with PSS. In an effort to understand the origins of these differences in the aging behavior, the elastic modulus and residual stress (σR) in the films were determined by wrinkling as a function of aging time. The change in the elastic modulus during aging does not appear to be directly correlated with the densification or expansion of the films, but the aging rates appear to roughly scale ashσR1/3. These results illustrate that the physical aging of thin polymer films can be altered by adjacent polymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys.2019,57, 992–1000

     
    more » « less