skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward extracting the scattering phase shift from integrated correlation functions. II. A relativistic lattice field theory model
In the present work, a relativistic relation that connects the difference of interacting and noninteracting integrated two-particle correlation functions in finite volume to infinite volume scattering phase shift through an integral is derived. We show that the difference of integrated finite volume correlation functions converges rapidly to its infinite volume limit as the size of the periodic box is increased. The fast convergence of our proposed formalism is illustrated by analytic solutions of a contact interaction model, the perturbation theory calculation, and also the Monte Carlo simulation of a complex ϕ 4 lattice field theory model. Published by the American Physical Society2024  more » « less
Award ID(s):
2418937
PAR ID:
10587046
Author(s) / Creator(s):
Publisher / Repository:
American Physical Society (APS)
Date Published:
Journal Name:
Physical Review D
Volume:
110
Issue:
1
ISSN:
2470-0010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This Letter presents the first measurement of event-by-event fluctuations of the net number (difference between the particle and antiparticle multiplicities) of multistrange hadrons Ξ and Ξ ¯ + and its correlation with the net-kaon number using the data collected by the ALICE Collaboration in pp, p-Pb, and Pb-Pb collisions at a center-of-mass energy per nucleon pair s NN = 5.02 TeV . The statistical hadronization model with a correlation over three units of rapidity between hadrons having the same and opposite strangeness content successfully describes the results. On the other hand, string-fragmentation models that mainly correlate strange hadrons with opposite strange quark content over a small rapidity range fail to describe the data. © 2025 CERN, for the ALICE Collaboration2025CERN 
    more » « less
  2. We discuss numerical aspects of instantons in two- and three-dimensional ϕ 4 theories with an internal O ( N ) symmetry group, the so-called N -vector model. By combining asymptotic transseries expansions for large arguments with convergence acceleration techniques, we obtain high-precision values for certain integrals of the instanton that naturally occur in loop corrections around instanton configurations. Knowledge of these numerical properties is necessary in order to evaluate corrections to the large-order factorial growth of perturbation theory in ϕ 4 theories. The results contribute to the understanding of the mathematical structures underlying the instanton configurations. Published by the American Physical Society2024 
    more » « less
  3. Six-dimensional chiral gauged Einstein-Maxwell supergravity admits a two-parameter rotating dyonic string solution whose near horizon limit is the direct product of three-dimensional Anti-De Sitter space and a squashed three-sphere S 3 . For a particular relation between the two parameters, the solution preserves 1 / 2 supersymmetry. We determine the complete Kaluza-Klein spectrum of the theory around these AdS 3 backgrounds. For the supersymmetric backgrounds, the states organize into infinite towers of long and short multiplets of OSp ( 2 | 2 ) . In a certain limit of parameters, both the supersymmetric and the nonsupersymmetric spectra exhibit scale separation. In the latter case there are five topologically massive vectors and five scalars retaining finite masses with integer conformal dimensions, and in the supersymmetric case there are supersymmetric partners with half integer conformal dimensions, while all other masses diverge. Published by the American Physical Society2025 
    more » « less
  4. We examine the bulk electronic structure of Nd 3 Ni 2 O 7 using Ni 2 p core-level hard x-ray photoemission spectroscopy combined with density functional theory + dynamical mean-field theory. Our results reveal a large deviation of the Ni 3 d occupation from the formal Ni 2.5 + valency, highlighting the importance of the charge transfer from oxygen ligands. We find that the dominant d 8 configuration is accompanied by nearly equal contributions from d 7 and d 9 states, exhibiting an unusual valence state among Ni-based oxides. Finally, we discuss the Ni d x 2 y 2 and d z 2 orbital-dependent hybridization, correlation and local spin dynamics. Published by the American Physical Society2025 
    more » « less
  5. A search for pair production of scalar and vector leptoquarks (LQs) each decaying to a muon and a bottom quark is performed using proton-proton collision data collected at s = 13 TeV with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 138 fb 1 . No excess above standard model expectation is observed. Scalar (vector) LQs with masses less than 1810 (2120) GeV are excluded at 95% confidence level, assuming a 100% branching fraction of the LQ decaying to a muon and a bottom quark. These limits represent the most stringent to date. © 2024 CERN, for the CMS Collaboration2024CERN 
    more » « less