skip to main content


Title: On the Maxey-Riley equation of motion and its extension to high Reynolds numbers
The inertial response of a particle to turbulent flows is a problem of relevance to a wide range of environmental and engineering problems. The equation most often used to describe the force balance is the Maxey-Riley equation, which includes in addition to buoyancy and steady drag forces, an unsteady Basset drag force related to past particle acceleration. Here we provide a historical review of how the Maxey-Riley equation was developed and how it is only suited for studies where the Reynolds number is less than unity. Revisiting the innovative mathematical methods employed by Basset (1888), we introduce an alternative formulation for the unsteady drag for application to a broader range of particle motions. While the Basset unsteady drag is negligible at higher Reynolds numbers, the revised unsteady drag is not.  more » « less
Award ID(s):
1841870
NSF-PAR ID:
10323192
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate how turbulence in liquid affects the rising speed of gas bubbles within the inertial range. Experimentally, we employ stereoscopic tracking of bubbles rising through water turbulence created by the convergence of turbulent jets and characterized with particle image velocimetry performed throughout the measurement volume. We use the spatially varying, time-averaged mean water velocity field to consider the physically relevant bubble slip velocity relative to the mean flow. Over a range of bubble sizes within the inertial range, we find that the bubble mean rise velocity $\left \langle v_z \right \rangle$ decreases with the intensity of the turbulence as characterized by its root-mean-square fluctuation velocity, $u'$ . Non-dimensionalized by the quiescent rise velocity $v_{q}$ , the average rise speed follows $\left \langle v_z \right \rangle /v_{q}\propto 1/{\textit {Fr}}$ at high ${\textit {Fr}}$ , where ${\textit {Fr}}=u'/\sqrt {dg}$ is a Froude number comparing the intensity of the turbulence to the bubble buoyancy, with $d$ the bubble diameter and $g$ the acceleration due to gravity. We complement these results by performing numerical integration of the Maxey–Riley equation for a point bubble experiencing nonlinear drag in three-dimensional, homogeneous and isotropic turbulence. These simulations reproduce the slowdown observed experimentally, and show that the mean magnitude of the slip velocity is proportional to the large-scale fluctuations of the flow velocity. Combining the numerical estimate of the slip velocity magnitude with a simple theoretical model, we show that the scaling $\left \langle v_z \right \rangle /v_{q}\propto 1/{\textit {Fr}}$ originates from a combination of the nonlinear drag and the nearly isotropic behaviour of the slip velocity at large ${\textit {Fr}}$ that drastically reduces the mean rise speed. 
    more » « less
  2. Bubble trajectories in the presence of a decaying Lamb–Oseen vortex are calculated using a modified Maxey–Riley equation. Some bubbles are shown to get trapped within the vortex in quasi-equilibrium states. All the trapped bubbles exit the vortex at a time that is only a function of the Galilei number and the vortex Reynolds number. The set of initial bubble locations that lead to entrapment is numerically determined to show the capturing potential of a single vortex. The results provide insight into the likelihood of bubble entrapment within vortical structures in turbulent flows. 
    more » « less
  3. Near-wall flow simulation remains a central challenge in aerodynamics modelling: Reynolds-averaged Navier–Stokes predictions of separated flows are often inaccurate, and large-eddy simulation (LES) can require prohibitively small near-wall mesh sizes. A deep learning (DL) closure model for LES is developed by introducing untrained neural networks into the governing equations and training in situ for incompressible flows around rectangular prisms at moderate Reynolds numbers. The DL-LES models are trained using adjoint partial differential equation (PDE) optimization methods to match, as closely as possible, direct numerical simulation (DNS) data. They are then evaluated out-of-sample – for aspect ratios, Reynolds numbers and bluff-body geometries not included in the training data – and compared with standard LES models. The DL-LES models outperform these models and are able to achieve accurate LES predictions on a relatively coarse mesh (downsampled from the DNS mesh by factors of four or eight in each Cartesian direction). We study the accuracy of the DL-LES model for predicting the drag coefficient, near-wall and far-field mean flow, and resolved Reynolds stress. A crucial challenge is that the LES quantities of interest are the steady-state flow statistics; for example, a time-averaged velocity component $\langle {u}_i\rangle (x) = \lim _{t \rightarrow \infty } ({1}/{t}) \int _0^t u_i(s,x)\, {\rm d}s$ . Calculating the steady-state flow statistics therefore requires simulating the DL-LES equations over a large number of flow times through the domain. It is a non-trivial question whether an unsteady PDE model with a functional form defined by a deep neural network can remain stable and accurate on $t \in [0, \infty )$ , especially when trained over comparatively short time intervals. Our results demonstrate that the DL-LES models are accurate and stable over long time horizons, which enables the estimation of the steady-state mean velocity, fluctuations and drag coefficient of turbulent flows around bluff bodies relevant to aerodynamics applications. 
    more » « less
  4. We present a stabilized POD–Galerkin reduced order method (ROM) for a Leray model. For the implementation of the model, we combine a two-step algorithm called Evolve-Filter (EF) with a computationally efficient finite volume method. In both steps of the EF algorithm, velocity and pressure fields are approximated using different POD basis and coefficients. To achieve pressure stabilization, we consider and compare two strategies: the pressure Poisson equation and the supremizer enrichment of the velocity space. We show that the evolve and filtered velocity spaces have to be enriched with the supremizer solutions related to both evolve and filter pressure fields in order to obtain stable and accurate solutions with the supremizer enrichment method. We test our ROM approach on a 2D unsteady flow past a cylinder at Reynolds number 0≤Re≤100. We find that both stabilization strategies produce comparable errors in the reconstruction of the lift and drag coefficients, with the pressure Poisson equation method being more computationally efficient. 
    more » « less
  5. The scale-dependence of locomotor performance has long been studied in comparative biomechanics, but how animals move in their natural environment remains poorly understood. At the upper extreme of body mass, baleen whales (Mysteci) are predictably among the most efficient swimmers in terms of cost of transport through a combination of low mass-specific metabolic rate and high hydrodynamic efficiency. Such efficiency enables these oceanic giants to migrate vast distances and thus underlies a major component of their life history and functional ecology. However, we lack even basic kinematic data for most species. Here we combine morphometric data from flyover drone photography, whale-borne inertial sensing tag data, and computational fluid dynamics (CFD) to study the locomotion of four rorqual species. Focusing on fundamental kinematic parameters such as tailbeat frequency and forward speed, we quantified spatial and temporal changes in swimming performance for individual whales and compared these metrics across a wide body mass range. We also calculated thrust and drag using lunate tail hydrodynamic modeling (Fish 1993), and compared these values against those from CFD simulations carried out with realistic rigid-body models. Differences in excess of 100% between the two approaches point to the significant contributions of tail and head heaving to overall drag, and thus the need to account for them in rigid-body CFD simulations. Together these kinematic data and CFD modeling inform a new parametric factor designed at multiplying the rigid-body drag equation to predict the contribution of body heaving unsteady hydrodynamics in cetaceans. 
    more » « less