skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Physics-informed laboratory estimation of Sargassum windage
A recent Maxey–Riley theory for Sargassum raft motion, which models a raft as a network of elastically interacting finite size, buoyant particles, predicts the carrying flow velocity to be given by the weighted sum of the water and air velocities (1−α)v+αw. The theory provides a closed formula for parameter α, referred to as windage, depending on the water-to-particle-density ratio or buoyancy (δ). From a series of laboratory experiments in an air–water stream flume facility under controlled conditions, we estimate α ranging from 0.02% to 0.96%. On average, our windage estimates can be up to nine times smaller than that considered in conventional Sargassum raft transport modeling, wherein it is customary to add a fraction of w to v chosen in an ad hoc piecemeal manner. Using the formula provided by the Maxey–Riley theory, we estimate δ ranging from 1.00 to 1.49. This is consistent with direct δ measurements, ranging from 0.9 to 1.25, which provide support for our α estimation.  more » « less
Award ID(s):
2148499 2148500
PAR ID:
10510828
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Physics of Fluids
Volume:
35
Issue:
11
ISSN:
1070-6631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The surge of pelagic Sargassum in the Intra-America Seas, particularly the Caribbean Sea, since the early 2010s has raised significant ecological concerns. This study emphasizes the need for a mechanistic understanding of Sargassum dynamics to elucidate the ecological impacts and uncertainties associated with blooms. By introducing a novel transport model, physical components such as ocean currents and winds are integrated with biological aspects affecting the Sargassum life cycle, including reproduction, grounded in an enhanced Maxey–Riley theory for floating particles. Nonlinear elastic forces among the particles are included to simulate interactions within and among Sargassum rafts. This promotes aggregation, consistent with observations, within oceanic eddies, which facilitate their transport. This cannot be achieved by the so-called leeway approach to transport, which forms the basis of current Sargassum modeling. Using satellite-derived data, the model is validated, outperforming the leeway model. Publicly accessible codes are provided to support further research and ecosystem management efforts. This comprehensive approach is expected to improve predictive capabilities and management strategies regarding Sargassum dynamics in affected regions, thus contributing to a deeper understanding of marine ecosystem dynamics and resilience. 
    more » « less
  2. The purpose of this note is to present an enhancement to a Maxey–Riley theory proposed in recent years for the dynamics of inertial particles on the ocean surface [Beron-Vera et al., “Building a Maxey–Riley framework for surface ocean inertial particle dynamics,” Phys. Fluids 31, 096602 (2019)]. This updated model removes constraints on the reserve buoyancy, defined as the fraction of the particle volume above the ocean surface. The refinement results in an equation that correctly describes both the neutrally buoyant and fully buoyant particle scenarios. 
    more » « less
  3. Abstract Because of their buoyancy, rigidity, and finite size, inertial particles do not obey the same dynamics as fluid parcels. The motion of small spherical particles in a fluid flow is described by the Maxey–Riley equations and depends nonlinearly on the velocity of the fluid in which the particles are immersed. Fluid velocities in the ocean often have a strong small-scale turbulent component which is difficult to observe or model, presenting a challenge to predicting the evolution of distributions of inertial particles in the ocean. To overcome this challenge, we assume that the turbulent velocity imposes a random force on particles and consider a stochastic analog of the Maxey–Riley equations. By performing a perturbation analysis of the stochastic Maxey–Riley equations, we obtain a simple and accurate partial differential equation for the spatial distribution of particles. The equation is of the advection–diffusion type and handles the uncertainty introduced by unresolved turbulent flow features. In several numerical test cases, distributions of particles obtained by solving the newly derived equation compare favorably with distributions obtained from Monte Carlo simulations of individual particle trajectories and with theoretical predictions. The advection–diffusion form of our newly derived equation is amenable to inclusion within many existing ocean circulation models. Significance StatementWe introduce a new model for describing spatial distributions of small rigid objects, such as plastic debris, in the ocean. The model takes into account the effects of finite particle size and particle buoyancy, which cause particle trajectories to differ from fluid parcel trajectories. Our model also represents small-scale turbulence stochastically. 
    more » « less
  4. The inertial response of a particle to turbulent flows is a problem of relevance to a wide range of environmental and engineering problems. The equation most often used to describe the force balance is the Maxey-Riley equation, which includes in addition to buoyancy and steady drag forces, an unsteady Basset drag force related to past particle acceleration. Here we provide a historical review of how the Maxey-Riley equation was developed and how it is only suited for studies where the Reynolds number is less than unity. Revisiting the innovative mathematical methods employed by Basset (1888), we introduce an alternative formulation for the unsteady drag for application to a broader range of particle motions. While the Basset unsteady drag is negligible at higher Reynolds numbers, the revised unsteady drag is not. 
    more » « less
  5. Context. The Lyman- α line in the ultraviolet (UV) and the [CII] line in the far-infrared (FIR) are widely used tools to identify galaxies in the early Universe and to obtain insights into interstellar medium (ISM) properties in high-redshift galaxies. By combining data obtained with ALMA in band 7 at ∼320 GHz as part of the ALMA Large Program to INvestigate [CII] at Early Times (ALPINE) with spectroscopic data from DEIMOS at the Keck Observatory, VIMOS and FORS2 at the Very Large Telescope, we assembled a unique sample of 53 main-sequence star-forming galaxies at 4.4 <   z  <  6 in which we detect both the Lyman- α line in the UV and the [CII] line in the FIR. Aims. The goal of this paper is to constrain the properties of the Ly α emission in these galaxies in relation to other properties of the ISM. Methods. We used [CII], observed with ALMA, as a tracer of the systemic velocity of the galaxies, and we exploited the available optical spectroscopy to obtain the Ly α -[CII] and ISM-[CII] velocity offsets. Results. We find that 90% of the selected objects have Ly α -[CII] velocity offsets in the range 0 <  Δ v Ly α  − [CII]  <  400 km s −1 , in line with the few measurements available so far in the early Universe, and significantly smaller than those observed at lower redshifts. At the same time, we observe ISM-[CII] offsets in the range −500 <  Δ v ISM−[CII]  <  0 km s −1 , in line with values at all redshifts, which we interpret as evidence for outflows in these galaxies. We find significant anticorrelations between Δ v Ly α −[CII] and the Ly α rest-frame equivalent width EW 0 (Ly α ) (or equivalently, the Ly α escape fraction f esc (Ly α )): galaxies that show smaller Δ v Ly α −[CII] have larger EW 0 (Ly α ) and f esc (Ly α ). Conclusions. We interpret these results in the framework of available models for the radiative transfer of Ly α photons. According to the models, the escape of Ly α photons would be favored in galaxies with high outflow velocities, producing large EW 0 (Ly α ) and small Δ v Ly α -[CII] , in agreement with our observations. The uniform shell model would also predict that the Ly α escape in galaxies with slow outflows (0 <   v out  <  300 km s −1 ) is mainly determined by the neutral hydrogen column density (NHI) along the line of sight, while the alternative model by Steidel et al. (2010, ApJ, 717, 289) would more highly favor a combination of NHI at the systemic velocity and covering fraction as driver of the Ly α escape. We suggest that the increase in Ly α escape that is observed in the literature between z  ∼ 2 and z  ∼ 6 is not due to a higher incidence of fast outflows at high redshift, but rather to a decrease in average NHI along the line of sight, or alternatively, a decrease in HI covering fraction. 
    more » « less