skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Theoretical perspective on flavour physics
Flavor physics offers many opportunities to probe the fundamental nature of matter and their interactions. The standard model (SM) of particle physics has a very unique flavor structure which is being tested by precision measurements at flavor experiments. Deviations from the SM predictions can point to new flavor structures and new states which can offer clues to the various flavor puzzles in the standard model. Motivated by recent results and flavor anomalies, we will focus on various processes that can reveal possible extension of the SM with new states such as leptoquarks, diquarks, sterile neutrino and dark sectors.  more » « less
Award ID(s):
2309937
PAR ID:
10587542
Author(s) / Creator(s):
Publisher / Repository:
Sissa Medialab
Date Published:
Page Range / eLocation ID:
036
Format(s):
Medium: X
Location:
Prague, Czech Republic
Sponsoring Org:
National Science Foundation
More Like this
  1. Flavor physics continues to be an interesting avenue to look for beyond the standard model (SM) physics. Recent results from flavor physics, both in the quark and lepton sectors, hint at possible new physics. In this work we focus on some flavor physics results, mainly in b decays, and speculate on possible new physics interpretations of these results. We also present a model that can connect some of the B anomalies to the MiniBooNe anomaly and the muon g − 2 measurement. 
    more » « less
  2. Neutrinos that are elastically scattered off atomic electrons provide a unique opportunity to investigate the standard model (SM) and beyond SM physics. In this work, we explore the new physics effects of neutrino electromagnetic properties through elastic neutrino-electron scattering using solar neutrinos at the low-energy range of PandaX-4T and XENONnT experiments. The properties of interest include the neutrino magnetic moment, millicharge, and charge radius, all of which are natural consequences of nonzero neutrino masses. We investigate their effects by incorporating each property into the SM framework, given the measured solar neutrino flux. By analyzing the latest Run0 and Run1 datasets from the PandaX-4T experiment, together with recent results from XENONnT, we derive new constraints on each electromagnetic property of neutrino. We present both flavor-independent results, obtained using a common parameter for all three neutrino flavors, and flavor-dependent results, derived by marginalizing over the three neutrino flavor components. Bounds we obtained are comparable or improved compared to those reported in the previous studies. 
    more » « less
  3. A<sc>bstract</sc> The coupling of the Higgs boson to first and second generation fermions has yet to be measured experimentally. There still could be very large deviations in these couplings, as the origin of flavor is completely unknown. Nevertheless, if Yukawa couplings are modified, especially for light generations, there are generically strong constraints from flavor-changing neutral currents (FCNCs). Therefore, it is imperative to understand whether there exists viable UV physics consistent with current data that motivates future Higgs coupling probes. In particular, the charm-quark Yukawa is the next quark coupling that could be measured at the LHCifit is a few times larger than the SM and compatible with flavor data. This is difficult to achieve in the context of standard ansatz such as Minimal Flavor Violation. In this paper we show that within the framework of Spontaneous Flavor Violation (SFV), using a Two Higgs Doublet Model as an example, the Higgs can be sufficiently charming that new LHC probes are relevant. In this charming region, we show that new Higgs states near the EW scale with large couplings to quarks are required, providing complementary observables or new constraints on the SM Yukawa couplings. The down-type SFV mechanism enabling the suppression of FCNCs also allows for independent modifications to the up-quark Yukawa coupling, which we explore in detail as well. 
    more » « less
  4. null (Ed.)
    Abstract The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE’s sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach. 
    more » « less
  5. Abstract We discuss some highlights of the FCC- $$ee$$ ee flavor physics program. It will help to explore various aspects of flavor physics: to test precision calculations, to probe nonperturbative QCD methods, and to increase the sensitivity to physics beyond the standard model. In some areas, FCC- $$ee$$ ee will do much better than current and near-future experiments. We briefly discuss several probes that can be relevant for maximizing the gain from the FCC- $$ee$$ ee flavor program. 
    more » « less