skip to main content


Title: Theoretical challenges for flavor physics
Abstract We discuss some highlights of the FCC- $$ee$$ ee flavor physics program. It will help to explore various aspects of flavor physics: to test precision calculations, to probe nonperturbative QCD methods, and to increase the sensitivity to physics beyond the standard model. In some areas, FCC- $$ee$$ ee will do much better than current and near-future experiments. We briefly discuss several probes that can be relevant for maximizing the gain from the FCC- $$ee$$ ee flavor program.  more » « less
Award ID(s):
2014071
NSF-PAR ID:
10345749
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The European Physical Journal Plus
Volume:
136
Issue:
9
ISSN:
2190-5444
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract Measurements of electroweak precision observables at future electron-position colliders, such as the CEPC, FCC-ee, and ILC, will be sensitive to physics at multi-TeV scales. To achieve this sensitivity, precise predictions for the Standard Model expectations of these observables are needed, including corrections at the three- and four-loop level. In this article, results are presented for the calculation of a subset of three-loop mixed electroweak-QCD corrections, stemming from diagrams with a gluon exchange and two closed fermion loops. The numerical impact of these corrections is illustrated for a number of applications: the prediction of the W-boson mass from the Fermi constant, the effective weak mixing angle, and the partial and total widths of the Z boson. Two alternative renormalization schemes for the top-quark mass are considered, on-shell and $$ \overline{\mathrm{MS}} $$ MS ¯ . 
    more » « less
  2. The statistical models used to derive the results of experimental analyses are of incredible scientific value andare essential information for analysis preservation and reuse. In this paper, we make the scientific case for systematically publishing the full statistical models and discuss the technical developments that make this practical. By means of a variety of physics cases -including parton distribution functions, Higgs boson measurements, effective field theory interpretations, direct searches for new physics, heavy flavor physics, direct dark matter detection, world averages, and beyond the Standard Model global fits -we illustrate how detailed information on the statistical modelling can enhance the short- and long-term impact of experimental results. 
    more » « less
  3. In Wisconsin, Ashmann and Franzen (2015) surveyed public and private teacher preparation programs. In some teacher education programs, a separate environmental education course is required for certification, or environmental education is included in a science teaching methods course while other programs integrate elements of environmental education across courses. Irrespective of the approach, the resources of time and space within the teacher preparation curriculum become a challenge (Mastrilli 2005; McDonald & Dominguez, 2010), just as it does for environmental education within the primary and secondary curriculum. Based on these findings, every teacher education program, even those that go beyond “typical,” could be doing more with respect to including environmental education in teacher preparation, and that the likely candidate(s) for why more is not being accomplished is the absence of a resource – material, human, or social. With funding from the National Science Foundation (DRL 1638420) we offered a 4-day, Environmental Education Workshop for faculty from public and private teacher preparation programs throughout Wisconsin. Our goal was to provide the time and space for faculty to come together around improving environmental education at each institution and to facilitate meaningful on-going interactions among institutions related to improving EE in our teacher preparation programs. Thereby, increasing available resources, such as improved curricula, networking for new ideas, and developing a common vision and set of norms. Outcomes from this workshop included changes to EE in individual courses, changes in emphasis on EE at the institutional level and on-going initiatives to network the efforts of those delivering environmental education through teacher preparation programs in Wisconsin. The 44 participating teacher educators created a total of 33 activities that will be shared broadly. Additionally, we were able to pull the group together in January and June 2018. We have also been gathering data from course syllabi and interviews about the impact of this process on the teacher educators. We will share insights from planning, conducting and follow-up activities related to our EE Workshop, as well as preliminary research findings. Our approach for addressing improvements in EE statewide can serve as a model for others considering similar efforts. 
    more » « less
  4. null (Ed.)
    Abstract Lepton scattering is an established ideal tool for studying inner structure of small particles such as nucleons as well as nuclei. As a future high energy nuclear physics project, an Electron-ion collider in China (EicC) has been proposed. It will be constructed based on an upgraded heavy-ion accelerator, High Intensity heavy-ion Accelerator Facility (HIAF) which is currently under construction, together with a new electron ring. The proposed collider will provide highly polarized electrons (with a polarization of ∼80%) and protons (with a polarization of ∼70%) with variable center of mass energies from 15 to 20 GeV and the luminosity of (2–3) × 10 33 cm −2 · s −1 . Polarized deuterons and Helium-3, as well as unpolarized ion beams from Carbon to Uranium, will be also available at the EicC. The main foci of the EicC will be precision measurements of the structure of the nucleon in the sea quark region, including 3D tomography of nucleon; the partonic structure of nuclei and the parton interaction with the nuclear environment; the exotic states, especially those with heavy flavor quark contents. In addition, issues fundamental to understanding the origin of mass could be addressed by measurements of heavy quarkonia near-threshold production at the EicC. In order to achieve the above-mentioned physics goals, a hermetical detector system will be constructed with cutting-edge technologies. This document is the result of collective contributions and valuable inputs from experts across the globe. The EicC physics program complements the ongoing scientific programs at the Jefferson Laboratory and the future EIC project in the United States. The success of this project will also advance both nuclear and particle physics as well as accelerator and detector technology in China. 
    more » « less
  5. The SUCCESS project’s main goal is to recruit, retain, and graduate low-income STEM students at WVU Tech and this abstract contains updates for Year 2. The recruitment activities started in early 2021 and continued during the summer of 2021 to form Cohort 1 and during the summer of 2022 to form Cohort 2. Currently, there are 19 scholars/students in the program. 12 new students (10 Computer Science (CS) and 2 Information Systems (IS) majors) were accepted in Fall 2022 and these 12 students are forming Cohort 2. 6 students were accepted into Electrical Engineering (EE) (4), Computer Engineering (CpE) (1), and CS (1) programs in Fall 2021. 2 EE and 1 CS students entered the program in Spring 2022. Two students (both EEs) stopped out of school for mainly their personal issues. These 7 students are forming Cohort 1. So far, scholars have completed at least one entrepreneurship course, attended career fairs, met with industry mentors, and attended senior design presentation events. Some of the scholars work with faculty on research projects. Students are actively engaging with the IEEE/ACM student branches and some of the scholars took leadership positions in these organizations. The SUCCESS team is regularly collecting and analyzing feedback from scholars to ensure that the necessary improvements are implemented. Every semester, scholars’ feedback is collected through pre-, mid-, and post-surveys. These surveys provide insights into scholars’ course/program performance, career updates, and also the level of persistence toward their program of study and entrepreneurship minor. This project is funded by NSF DUE S-STEM Program from 2021-2026.

     
    more » « less