Flavor physics continues to be an interesting avenue to look for beyond the standard model (SM) physics.
Recent results from flavor physics, both in the quark and lepton sectors, hint at possible new physics. In
this work we focus on some flavor physics results, mainly in b decays, and speculate on possible new
physics interpretations of these results. We also present a model that can connect some of the B anomalies
to the MiniBooNe anomaly and the muon g − 2 measurement.
more »
« less
Theoretical challenges for flavor physics
Abstract We discuss some highlights of the FCC- $$ee$$ ee flavor physics program. It will help to explore various aspects of flavor physics: to test precision calculations, to probe nonperturbative QCD methods, and to increase the sensitivity to physics beyond the standard model. In some areas, FCC- $$ee$$ ee will do much better than current and near-future experiments. We briefly discuss several probes that can be relevant for maximizing the gain from the FCC- $$ee$$ ee flavor program.
more »
« less
- Award ID(s):
- 2014071
- PAR ID:
- 10345749
- Date Published:
- Journal Name:
- The European Physical Journal Plus
- Volume:
- 136
- Issue:
- 9
- ISSN:
- 2190-5444
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)A bstract Measurements of electroweak precision observables at future electron-position colliders, such as the CEPC, FCC-ee, and ILC, will be sensitive to physics at multi-TeV scales. To achieve this sensitivity, precise predictions for the Standard Model expectations of these observables are needed, including corrections at the three- and four-loop level. In this article, results are presented for the calculation of a subset of three-loop mixed electroweak-QCD corrections, stemming from diagrams with a gluon exchange and two closed fermion loops. The numerical impact of these corrections is illustrated for a number of applications: the prediction of the W-boson mass from the Fermi constant, the effective weak mixing angle, and the partial and total widths of the Z boson. Two alternative renormalization schemes for the top-quark mass are considered, on-shell and $$ \overline{\mathrm{MS}} $$ MS ¯ .more » « less
-
sPHENIX is a next-generation detector experiment at the Relativistic Heavy Ion Collider, designed for a broad set of jet and heavy-flavor probes of the Quark-Gluon Plasma created in heavy ion collisions. In anticipation of the commissioning and first data-taking of the detector in 2023, a RIKEN-BNL Research Center (RBRC) workshop was organized to collect theoretical input and identify compelling aspects of the physics program. This paper compiles theoretical predictions from the workshop participants for jet quenching, heavy flavor and quarkonia, cold QCD, and bulk physics measurements at sPHENIX.more » « less
-
Wolf, S. ; Bennett, M.B. ; Frank, B.W. (Ed.)We are continuing a nationwide effort to develop a systemic understanding of the landscape of informal physics using an organizational theory perspective. We have collected surveys and interviews with informal physics program facilitators, but this information is only from the perspective of the faculty or physics student leaders and does not tell us about the social dynamics within each program. Thus, to complement these data, we need to observe informal physics events as they occur. In this paper, we will discuss our strategy for visits to program sites to observe social interactions between program participants as well as programmatic details in action. We report on an initial site visit to a physics open house event, where we took field-notes and conducted interviews with participating personnel members. Here, we compare the types of data we are able to collect from site visits and interviews/surveys with lead program facilitators.more » « less
-
Even though jet substructure was not an original design consideration for the Large Hadron Collider (LHC) experiments, it has emerged as an essential tool for the current physics program. We examine the role of jet substructure on the motivation for and design of future energy Frontier colliders. In particular, we discuss the need for a vibrant theory and experimental research and development program to extend jet substructure physics into the new regimes probed by future colliders. Jet substructure has organically evolved with a close connection between theorists and experimentalists and has catalyzed exciting innovations in both communities. We expect such developments will play an important role in the future energy Frontier physics program.more » « less