skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Converting Strain Release into Aromaticity Loss for Activation of Donor–Acceptor Cyclopropanes: Generation of Quinone Methide Traps for C-Nucleophiles
Here, we present a new approach for the activation of donor–acceptor cyclopropanes in ring-opening reactions, which does not require the use of a Lewis or Brønsted acid as a catalyst. Donor–acceptor cyclopropanes containing a phenolic group as the donor undergo deprotonation and isomerization to form the corresponding quinone methides. This innovative strategy was applied to achieve (4 + 1)-annulation of cyclopropanes with sulfur ylides, affording functionalized dihydrobenzofurans. Additionally, the generated ortho- and para-(aza)quinone methides can be trapped by various CH-acids.  more » « less
Award ID(s):
2102579
PAR ID:
10587676
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
Organic Letters
Volume:
26
Issue:
38
ISSN:
1523-7060
Page Range / eLocation ID:
8177 to 8182
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract [3+n]‐Cycloaddition reactions that employ donor‐acceptor cyclopropanes using either chiral catalysts and racemic cyclopropanes or achiral catalysts and chiral, non‐racemic, cyclopropanes have become useful transformations for the construction of carbocyclic and heterocyclic compounds, with both processes offering mechanistic and structural advantages in ring formation. Although the vast majority of asymmetric cycloaddition reactions of donor‐acceptor cyclopropanes have been performed with racemic cyclopropane compounds catalyzed by Lewis acids with chiral ligands, optically active cyclopropane compounds can serve the same role using Lewis acids without chiral ligands. This review covers the use of chiral catalysts with racemic donor‐acceptor cyclopropanes and the use of chiral non‐racemic donor‐acceptor cyclopropanes with achiral Lewis acid catalysts. 
    more » « less
  2. The charge-transfer (CT) state arising as a hybrid electronic state at the interface between charge donor and charge acceptor molecular units is important to a wide variety of physical processes in organic semiconductor devices. The exact nature of this state depends heavily on the nature and co-facial overlap between the donor and acceptor; however, altering this overlap is usually accompanied by extensive confounding variations in properties due to extrinsic factors, such as microstructure. As a consequence, establishing reliable relationships between donor/acceptor molecular structures, their molecular overlap, degree of charge transfer and physical properties, is challenging. Herein, we examine the electronic structure of a polymorphic system based on the donor dibenzotetrathiafulvalene (DBTTF) and the acceptor 7,7,8,8-tetracyanoquinodimethane (TCNQ) in the form of high-quality single crystals varying in the donor–acceptor overlap. Using angle-resolved photoemission spectroscopy, we resolve the highest occupied molecular orbital states of the CT crystals. Analysis based on field-effect transistors allows us to probe the sub-gap states impacting hole and electron transport. Our results expand the understanding on the impact of donor and acceptor interactions on electronic structure and charge transport. 
    more » « less
  3. Ternary organic solar cells were simulated as a 3D grid of resistors and photodiodes to study how a secondary acceptor as a third material affects the overall blend to optimize for power output. The voltage at zero current, VOC, of the donor and secondary acceptor interfaces should be at least that of the primary system. When the thickness and secondary acceptor conductivity are high, it is better for a secondary acceptor to stick to the main acceptor due to an asymmetry in current pathways. Otherwise, it is better to place the secondary acceptor next to the donor to increase the amount of donor : acceptor interfaces. These results are likely most applicable to the addition of fullerene acceptors into donor : non-fullerene acceptor blends, since their potential benefits come from an increased conductance and morphology as opposed to increasing the absorption spectra. 
    more » « less
  4. Intermediate donor–acceptor electronic coupling leads to a brilliant fluorescence behaviour. Charge transfer (CT) is key for molecular photonics, governing the optical properties of chromophores comprising electron-rich and electron-deficient components. In photoexcited dyes with an acceptor– donor–acceptor or donor–acceptor–donor architecture, CT breaks their quadrupolar symmetry and yields dipolar structures manifesting pronounced solvatochromism. Herein, we explore the effects of electronic coupling through biaryl linkers on the excited-state symmetry breaking of such hybrid dyes composed of an electron-rich core, i.e., 1,4-dihydropyrrolo[3,2-b]pyrrole (DHPP), and pyrene substituents that can act as electron acceptors. Experimental and theoretical studies reveal that strengthening the donor–acceptor electronic coupling decreases the CT rates and the propensity for symmetry breaking. We ascribe this unexpected result to effects of electronic coupling on the CT thermodynamics, which in its turn affects the CT kinetics. In cases of intermediate electronic coupling, the pyrene-DHPP conjugates produce fluorescence spectra, spreading over the whole visible range, that in addition to the broad CT emission, show bands from the radiative deactivation of the locally excited states of the donor and the acceptors. Because the radiative deactivation of the low-lying CT states is distinctly slow, fluorescence from upper locally excited states emerge leading to the observed anti- Kasha behaviour. As a result, these dyes exhibit white fluorescence. In addition to demonstrating the multifaceted nature of the effects of electronic coupling on CT dynamics, these chromophores can act as broad-band light sources with practical importance for imaging and photonics. 
    more » « less
  5. A series of model oligomers consisting of combinations of a traditional strong donor unit (3,4-ethylenedioxythiophene), a traditional strong acceptor unit (benzo[ c ][1,2,5]thiadiazole), and the ambipolar unit thieno[3,4- b ]pyrazine were synthesized via cross-coupling methods. The prepared oligomers include all six possible dimeric combinations in order to characterize the extent and nature of donor–acceptor effects commonly used in the design of conjugated materials, with particular focus on understanding how the inclusion of ambipolar units influences donor–acceptor frameworks. The full oligomeric series was thoroughly investigated via photophysical and electrochemical studies, in parallel with density functional theory (DFT) calculations, in order to correlate the nature and extent of donor–acceptor effects on both frontier orbital energies and the desired narrowing of the HOMO–LUMO energy gap. The corresponding relationships revealed should then provide a deeper understanding of donor–acceptor interactions and their application to conjugated materials. 
    more » « less