skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synchronous RNA conformational changes trigger ordered phase transitions in crystals
Abstract Time-resolved studies of biomacromolecular crystals have been limited to systems involving only minute conformational changes within the same lattice. Ligand-induced changes greater than several angstroms, however, are likely to result in solid-solid phase transitions, which require a detailed understanding of the mechanistic interplay between conformational and lattice transitions. Here we report the synchronous behavior of the adenine riboswitch aptamer RNA in crystal during ligand-triggered isothermal phase transitions. Direct visualization using polarized video microscopy and atomic force microscopy shows that the RNA molecules undergo cooperative rearrangements that maintain lattice order, whose cell parameters change distinctly as a function of time. The bulk lattice order throughout the transition is further supported by time-resolved diffraction data from crystals using an X-ray free electron laser. The synchronous molecular rearrangements in crystal provide the physical basis for studying large conformational changes using time-resolved crystallography and micro/nanocrystals.  more » « less
Award ID(s):
1231306
PAR ID:
10587709
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Nature Communications
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Upon osmotic compression, rotationally symmetric faceted colloidal particles can form translationally ordered, orientationally disordered rotator mesophases. This study explores the mechanism of rotator-to-crystal phase transitions where orientational order is gained in a translationally ordered phase, using rotator-phase forming truncated cubes as a testbed. Monte Carlo simulations were conducted for two selected truncations (s), one for s = 0.527 where the rotator and crystal lattices are dissimilar and one for s = 0.572 where the two phases have identical lattices. These differences set the stage for a qualitative difference in their rotator–crystal transitions, highlighting the effect of lattice distortion on phase transition kinetics. Our simulations reveal that significant lattice deviatoric effects could hinder the rotator-to-crystal transition and favor arrangements of lower packing fraction instead. Indeed, upon compression, it is found that for s = 0.527, the rotator phase does not spontaneously transition into the stable, densely packed crystal due to the high lattice strains involved but instead transitions into a metastable solid phase to be colloquially referred to as “orientational salt” for short, which has a similar lattice as the rotator phase and exhibits two distinct particle orientations having substitutional order, alternating regularly throughout the system. This study paves the way for further analysis of diffusionless transformations in nanoparticle systems and how lattice-distortion could influence crystallization kinetics. 
    more » « less
  2. Using in situ atomic-resolution scanning transmission electron microscopy, atomic movements and rearrangements associated with diffusive solid to solid phase transformations in the Pt−Sn system are captured to reveal details of the underlying atomistic mechanisms that drive these transformations. In the PtSn4 to PtSn2 phase transformation, a periodic superlattice substructure and a unique intermediate structure precede the nucleation and growth of the PtSn2 phase. At the atomic level, all stages of the transformation are templated by the anisotropic crystal structure of the parent PtSn4 phase. In the case of the PtSn2 to Pt2Sn3 transformation, the anisotropy in the structure of product Pt2Sn3 dictates the path of transformation. Analysis of atomic configurations at the transformation front elucidates the diffusion pathways and lattice distortions required for these phase transformations. Comparison of multiple Pt−Sn phase transformations reveals the structural parameters governing solid to solid phase transformations in this technologically interesting intermetallic system. 
    more » « less
  3. Biological systems, including proteins, employ water-mediated supramolecular interactions to adopt specific conformations for their functions. However, current solid-state supramolecular materials are typically stiff and fail to capture the dynamic behaviors observed in proteins. Here, we present dynamic crystal-hydrates of aliphatic dipeptides with sequence-isomers of leucine (L) and isoleucine (I). These crystals exhibit shallow conformational energy landscapes, with various reconfigurable crystal nano-architectures accessible through small changes in relative humidity and temperature. Specifically, for LI crystals, as water content changes, the solid-state supramolecular architecture rapidly and reversibly transitions between perpendicular and parallel honeycomb nano-architectures, as well as layered van der Waals structures, leading to significant and distinct variations in mechanical and photophysical properties. Our findings demonstrate the potential of leveraging aliphatic hydrophobic domains inspired by protein architectures to create dynamic solid-state materials with context-adaptive properties. 
    more » « less
  4. Abstract Phase transitions are typically quantified using order parameters, such as crystal lattice distances and radial distribution functions, which can identify subtle changes in crystalline materials or high‐contrast phases with large structural differences. However, the identification of phases with high complexity, multiscale organization and of complex patterns during the structural fluctuations preceding phase transitions, which are essential for understanding the system pathways between phases, is challenging for those traditional analyses. Here, it is shown that for two model systems— thermotropic liquid crystals and a lyotropic water/surfactant mixtures—graph theoretical (GT) descriptors can successfully identify complex phases combining molecular and nanoscale levels of organization that are hard to characterize with traditional methodologies. Furthermore, the GT descriptors also reveal the pathways between the different phases. Specifically, centrality parameters and node‐based fractal dimension quantify the system behavior preceding the transitions, capturing fluctuation‐induced breakup of aggregates and their long‐range cooperative interactions. GT parameterization can be generalized for a wide range of chemical systems and be instrumental for the growth mechanisms of complex nanostructures. 
    more » « less
  5. Ultrafast lattice deformation of tens to hundreds of nanometer thick metallic crystals, after femtosecond laser excitation, was measured directly using 8.04 keV subpicosecond x-ray and 59 keV femtosecond electron pulses. Coherent phonons were generated in both single crystal and polycrystalline films. Lattice compression was observed within the first few picoseconds after laser irradiation in single crystal aluminum, which was attributed to the generation of a blast force and the propagation of elastic waves. The different time scales of lattice heating for tens and hundreds nanometer thick films are clearly distinguished by electron and x-ray pulse diffraction. The electron and lattice heating due to ultrafast deposition of photon energy was simulated using the two-temperature model and the results agreed with experimental observations. This study demonstrates that the combination of two complementary ultrafast time-resolved methods, ultrafast x-ray, and electron diffraction will provide a panoramic picture of the transient structural changes in crystals. 
    more » « less