skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Validation of OpenCap on lower extremity kinematics during functional tasks
Marker-based motion capture is a fundamental tool in biomechanical analysis, yet comes with major constraints such as time, cost and accessibility. This study aimed to validate the use of OpenCap, a free, markerless motion capture system compared to a marker-based motion capture system to measure lower extremity kinematics during functional tasks. 20 individuals from an athletic population (18 females, 2 males) performed two gait trials (walking, running) and three functional tasks (double leg squat, countermovement jump, jump-landing). Lower extremity peak joint kinematics were collected simultaneously using Vicon and OpenCap to assess the validity of markerless motion capture. Strong agreements were observed in the frontal hip plane joint kinematics across all tasks with root mean squared errors below 6◦. Moderate agreements were observed in the sagittal knee plane joint kinematics (4–10◦) and there was a weak agreement in the gait trials of the sagittal hip measures (>10◦). The results from the study indicate the need for further research on the use of OpenCap in clinical settings. The findings align with previous studies with similar agreements observed in the frontal hip and sagittal knee measures. Validating the use of an open-source motion capture software could provide clinicians and researchers an accessible tool for in depth biomechanical assessments.  more » « less
Award ID(s):
2143714
PAR ID:
10587710
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Journal of Biomechanics
Date Published:
Journal Name:
Journal of Biomechanics
Volume:
183
Issue:
C
ISSN:
0021-9290
Page Range / eLocation ID:
112602
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background: Wearable technology is used by clinicians and researchers and play a critical role in biomechanical assessments and rehabilitation. Objective: The purpose of this research is to validate a soft robotic stretch (SRS) sensor embedded in a compression knee brace (smart knee brace) against a motion capture system focusing on knee joint kinematics. Methods: Sixteen participants donned the smart knee brace and completed three separate tasks: non-weight bearing knee flexion/extension, bodyweight air squats, and gait trials. Adjusted R2 for goodness of fit (R2), root mean square error (RMSE), and mean absolute error (MAE) between the SRS sensor and motion capture kinematic data for all three tasks were assessed. Results: For knee flexion/extension: R2 = 0.799, RMSE = 5.470, MAE = 4.560; for bodyweight air squats: R2 = 0.957, RMSE = 8.127, MAE = 6.870; and for gait trials: R2 = 0.565, RMSE = 9.190, MAE = 7.530 were observed. Conclusions: The smart knee brace demonstrated a higher goodness of fit and accuracy during weight-bearing air squats followed by non-weight bearing knee flexion/extension and a lower goodness of fit and accuracy during gait, which can be attributed to the SRS sensor position and orientation, rather than range of motion achieved in each task. 
    more » « less
  2. Abstract The development of wearable technology, which enables motion tracking analysis for human movement outside the laboratory, can improve awareness of personal health and performance. This study used a wearable smart sock prototype to track foot–ankle kinematics during gait movement. Multivariable linear regression and two deep learning models, including long short-term memory (LSTM) and convolutional neural networks, were trained to estimate the joint angles in sagittal and frontal planes measured by an optical motion capture system. Participant-specific models were established for ten healthy subjects walking on a treadmill. The prototype was tested at various walking speeds to assess its ability to track movements for multiple speeds and generalize models for estimating joint angles in sagittal and frontal planes. LSTM outperformed other models with lower mean absolute error (MAE), lower root mean squared error, and higher R -squared values. The average MAE score was less than 1.138° and 0.939° in sagittal and frontal planes, respectively, when training models for each speed and 2.15° and 1.14° when trained and evaluated for all speeds. These results indicate wearable smart socks to generalize foot–ankle kinematics over various walking speeds with relatively low error and could consequently be used to measure gait parameters without the need for a lab-constricted motion capture system. 
    more » « less
  3. Abstract Background To compare the performance (as determined by lower extremity kinematics) of knee exercises in healthy middle-aged and older individuals immediately after instruction and one week later. Methods This is a cross-sectional study in a laboratory setting. Nineteen healthy volunteers (age [y] 63.1 ± 8.6, mass [kg] 76.3 ± 14.7, height [m] 1.7 ± 0.1) participated in this study. High speed video and reflective markers were used to track motion during four exercises. The exercises were knee flexion, straight leg raise, and “V “in supine position, and hip abduction in side lying position. All participants received verbal and tactile cues during the training phase and the therapist observed and, if necessary, corrected the exercises. Upon return a week later the participants performed the same exercises without any further instructions. Knee and hip sagittal and rotational angles were extracted from the motion capture. A repeated measures t-test was used to compare the motions between two visits. Results Participants demonstrated more knee flexion during straight leg raise and “V in” exercises at the 2nd visit compared to the 1st visit (both p  <  0.05). During the “V out” exercise, they performed more external rotation ( p  <  0.05) while they showed more internal rotation during the “V in” exercise at the 2nd visit compared to the 1st visit. Conclusions Exercise performance declined significantly in healthy middle-aged and older individuals one week after instruction. This decline occurred despite an instructional exercise sheet being given to every participant. Other approaches designed to help individuals retain the ability to perform rehabilitative exercises correctly need to be explored. 
    more » « less
  4. A novel wearable solution using soft robotic sensors (SRS) has been investigated to model foot-ankle kinematics during gait cycles. The capacitance of SRS related to foot-ankle basic movements was quantified during the gait movements of 20 participants on a flat surface as well as a cross-sloped surface. In order to evaluate the power of SRS in modeling foot-ankle kinematics, three-dimensional (3D) motion capture data was also collected for analyzing gait movement. Three different approaches were employed to quantify the relationship between the SRS and the 3D motion capture system, including multivariable linear regression, an artificial neural network (ANN), and a time-series long short-term memory (LSTM) network. Models were compared based on the root mean squared error (RMSE) of the prediction of the joint angle of the foot in the sagittal and frontal plane, collected from the motion capture system. There was not a significant difference between the error rates of the three different models. The ANN resulted in an average RMSE of 3.63, being slightly more successful in comparison to the average RMSE values of 3.94 and 3.98 resulting from multivariable linear regression and LSTM, respectively. The low error rate of the models revealed the high performance of SRS in capturing foot-ankle kinematics during the human gait cycle. 
    more » « less
  5. Abstract Lower limb joint kinematics have been measured in laboratory settings using fixed camera-based motion capture systems; however, recently inertial measurement units (IMUs) have been developed as an alternative. The purpose of this study was to test a quaternion conversion (QC) method for calculating the three orthogonal knee angles during the high velocities associated with a jump landing using commercially available IMUs. Nine cadaveric knee specimens were instrumented with APDM Opal IMUs to measure knee kinematics in one-legged 3–4× bodyweight simulated jump landings, four of which were used in establishing the parameters (training) for the new method and five for validation (testing). We compared the angles obtained from the QC method to those obtained from a commercially available sensor and algorithm (APDM Opal) with those calculated from an active marker motion capture system. Results showed a significant difference between both IMU methods and the motion capture data in the majority of orthogonal angles (p < 0.01), though the differences between the QC method and Certus system in the testing set for flexion and rotation angles were smaller than the APDM Opal algorithm, indicating an improvement. Additionally, in all three directions, both the limits of agreement and root-mean-square error between the QC method and the motion capture system were smaller than between the commercial algorithm and the motion capture. 
    more » « less