With the proliferation of safety-critical real-time systems in our daily life, it is imperative that their security is protected to guarantee their functionalities. To this end, one of the most powerful modern security primitives is the enforcement of data flow integrity. However, the run-time overhead can be prohibitive for real-time cyber-physical systems. On the other hand, due to strong safety requirements on such real-time cyber-physical systems, platforms are often designed with enough reservation such that the system remains real-time even if it is experiencing the worst-case execution time. We conducted a measurement study on eight popular CPS systems and found the worst-case execution time is often at least five times the average run time. In this paper, we propose opportunistic data flow integrity, OP-DFI, that takes advantage of the system reservation to enforce data flow integrity to the CPS software. To avoid impacting the real-time property, OP-DFI tackles the challenge of slack estimation and run-time policy swapping to take advantage of the extra time in the system opportunistically. To ensure the security protection remains coherent, OP-DFI leverages in-line reference monitors and hardware-assisted features to perform dynamic fine-grained sandboxing. We evaluated OP-DFI on eight real-time CPS. With a worst-case execution time overhead of 2.7%, OP-DFI effectively performs DFI checking on 95.5% of all memory operations and 99.3% of safety-critical control-related memory operations on average.
more »
« less
This content will become publicly available on May 26, 2026
Time-Aware Packet Forwarding in Programmable Data Planes
Networks in many safety-critical systems like avionics, automotive, and industrial plants have strict end-to-end delay requirements to be met for correct system operation. Existing software-defined real-time networks do not support data plane programmability provided by recent protocol-independent switch architectures such as P4. Our research enables time-aware flow forwarding in P4-enabled software-defined time-critical networks. In this paper, we introduce time-aware flow scheduling for P4-enabled SDN architectures. We study two scheduling policies: the first one prioritizes flows based on slack (i.e., how much time is left to reach the destination), and the second one uses finish time as a priority metric, which is determined from its data rate requirements. Both approaches were implemented and tested in the P4 software stack. We find that the slack-based forwarding scheme performs better in retaining real-time requirements. Our publicly released scheduler implementations will assist network engineers in adapting programmable switches to safety-critical applications that demand precise timing guarantees.
more »
« less
- Award ID(s):
- 2345653
- PAR ID:
- 10587772
- Publisher / Repository:
- IEEE
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Software defined networking (SDN) allows organizations to modify networks programmatically to implement custom forwarding behavior and to react to changing conditions. While there are many approaches available to implement SDN those that leverage forwarding table abstractions such as OpenFlow and P4 require developers to decompose problems into one or more tables associated with a definable pipeline. This paper explores tradeoffs between table depth and pipeline length associated with different problem decomposition options by analyzing the performance impact on hardware and software data planes including software data planes leveraging hardware acceleration through the use of SmartNICs.more » « less
-
null (Ed.)In ROS (Robot Operating System), most applications in time- and safety-critical domain are constructed in the form of callback chains with data dependencies. Due to the shortcomings in its real-time support, ROS does not provide a strong timing guarantee and may lead to disastrous results. Although ROS2 claims to enhance the real-time capability, ensuring predictable end-to-end chain latency still remains a challenging problem. In this paper, we propose a new priority-driven chain-aware scheduler for the ROS2 framework and present end-to-end latency analysis for the proposed scheduler. With our scheduler, callbacks are prioritized based on the given timing requirements of the corresponding chains so that the end-to-end latency of critical chains can be improved with a predictable bound. The proposed scheduling design includes priority assignment and resource allocation considering all ROS2 scheduling-related abstractions, e.g., callbacks, nodes, and executors. To the best of our knowledge, this is the first work to address the inherent limitations of ROS2 in end-to-end latency by proposing a new scheduler design. We have implemented our scheduler in ROS2 running on NVIDIA Xavier NX. We have conducted case studies and schedulability experiments. The results show that the proposed scheduler yields a substantial improvement in end-to-end latency over the default ROS2 scheduler and the latest work in real-world scenarios.more » « less
-
Data movement latency when using on-chip accelerators in emerging heterogeneous architectures is a serious performance bottleneck. While hardware/software mechanisms such as peer-to-peer DMA between producer/consumer accelerators allow bypassing main memory and significantly reduce main memory contention, schedulers in both the hardware and software domains remain oblivious to their presence. Instead, most contemporary schedulers tend to be deadline-driven, with improved utilization and/or throughput serving as secondary or co-primary goals. This lack of focus on data communication will only worsen execution times as accelerator latencies reduce. In this paper, we present RELIEF (RElaxing Least-laxIty to Enable Forwarding), an online least laxity-driven accelerator scheduling policy that relieves memory pressure in accelerator-rich architectures via data movement-aware scheduling. RELIEF leverages laxity (time margin to a deadline) to opportunistically utilize available hardware data forwarding mechanisms while minimizing quality-of-service (QoS) degradation and unfairness. RELIEF achieves up to 50% more forwards compared to state-of- the-art policies, reducing main memory traffic and energy consumption by up to 32% and 18%, respectively. At the same time, RELIEF meets 14% more task deadlines on average and reduces worst-case deadline violation by 14%, highlighting QoS and fairness improvements.more » « less
-
Both energy-efficiency and real-time performance are critical requirements in many embedded systems applications such as self-driving car, robotic system, disaster response, and security/safety control. These systems entail a myriad of real-time tasks, where each task itself is a parallel task that can utilize multiple computing units at the same time. Driven by the increasing demand for parallel tasks, multi-core embedded processors are inevitably evolving to many-core. Existing work on real-time parallel tasks mostly focused on real-time scheduling without addressing energy consumption. In this paper, we address hard real-time scheduling of parallel tasks while minimizing their CPU energy consumption on multicore embedded systems. Each task is represented as a directed acyclic graph (DAG) with nodes indicating different threads of execution and edges indicating their dependencies. Our technique is to determine the execution speeds of the nodes of the DAGs to minimize the overall energy consumption while meeting all task deadlines. It incorporates a frequency optimization engine and the dynamic voltage and frequency scaling (DVFS) scheme into the classical real-time scheduling policies (both federated and global) and makes them energy-aware. The contributions of this paper thus include the first energy-aware online federated scheduling and also the first energy-aware global scheduling of DAGs. Evaluation using synthetic workload through simulation shows that our energy-aware real-time scheduling policies can achieve up to 68% energy-saving compared to classical (energy-unaware) policies. We have also performed a proof of concept system evaluation using physical hardware demonstrating the energy efficiency through our proposed approach.more » « less
An official website of the United States government
