With the proliferation of autonomous safety-critical cyber-physical systems (CPS) in our daily life, their security is becoming ever more important. Remote attestation is a powerful mechanism to enable remote verification of system integrity. While recent developments have made it possible to efficiently attest IoT operations, autonomous systems that are built on top of real-time cyber-physical control loops and execute missions independently present new unique challenges. In this paper, we formulate a new security property, Realtime Mission Execution Integrity (RMEI) to provide proof of correct and timely execution of the missions. While it is an attractive property, measuring it can incur prohibitive overhead for the real-time autonomous system. To tackle this challenge, we propose policy-based attestation of compartments to enable a trade-off between the level of details in measurement and runtime overhead. To further minimize the impact on real-time responsiveness, multiple techniques were developed to improve the performance, including customized software instrumentation and timing recovery through re-execution. We implemented a prototype of ARI and evaluated its performance on five CPS platforms. A user study involving 21 developers with different skill sets was conducted to understand the usability of our solution. 
                        more » 
                        « less   
                    
                            
                            Opportunistic Data Flow Integrity for Real-time Cyber-physical Systems Using Worst Case Execution Time Reservation
                        
                    
    
            With the proliferation of safety-critical real-time systems in our daily life, it is imperative that their security is protected to guarantee their functionalities. To this end, one of the most powerful modern security primitives is the enforcement of data flow integrity. However, the run-time overhead can be prohibitive for real-time cyber-physical systems. On the other hand, due to strong safety requirements on such real-time cyber-physical systems, platforms are often designed with enough reservation such that the system remains real-time even if it is experiencing the worst-case execution time. We conducted a measurement study on eight popular CPS systems and found the worst-case execution time is often at least five times the average run time. In this paper, we propose opportunistic data flow integrity, OP-DFI, that takes advantage of the system reservation to enforce data flow integrity to the CPS software. To avoid impacting the real-time property, OP-DFI tackles the challenge of slack estimation and run-time policy swapping to take advantage of the extra time in the system opportunistically. To ensure the security protection remains coherent, OP-DFI leverages in-line reference monitors and hardware-assisted features to perform dynamic fine-grained sandboxing. We evaluated OP-DFI on eight real-time CPS. With a worst-case execution time overhead of 2.7%, OP-DFI effectively performs DFI checking on 95.5% of all memory operations and 99.3% of safety-critical control-related memory operations on average. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10504257
- Publisher / Repository:
- USENIX Association
- Date Published:
- Journal Name:
- Proceedings of the 33rd USENIX Conference on Security Symposium
- Format(s):
- Medium: X
- Location:
- PHILADELPHIA, PA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)This paper studies the current status and future directions of RTOS (Real-Time Operating Systems) for time-sensitive CPS (Cyber-Physical Systems). GPOS (General Purpose Operating Systems) existed before RTOS but did not meet performance requirements for time sensitive CPS. Many GPOS have put forward adaptations to meet the requirements of real-time performance, and this paper compares RTOS and GPOS and shows their pros and cons for CPS applications. Furthermore, comparisons among select RTOS such as VxWorks, RTLinux, and FreeRTOS have been conducted in terms of scheduling, kernel, and priority inversion. Various tools for WCET (Worst-Case Execution Time) estimation are discussed. This paper also presents a CPS use case of RTOS, i.e. JetOS for avionics, and future advancements in RTOS such as multi-core RTOS, new RTOS architecture and RTOS security for CPS.more » « less
- 
            Deeply embedded systems powered by microcontrollers are becoming popular with the emergence of Internet-of-Things (IoT) technology. However, these devices primarily run C/C\({+}{+}\)code and are susceptible to memory bugs, which can potentially lead to both control data attacks and non-control data attacks. Existing defense mechanisms (such as control-flow integrity (CFI), dataflow integrity (DFI) and write integrity testing (WIT), etc.) consume a massive amount of resources, making them less practical in real products. To make it lightweight, we design a bitmap-based allowlist mechanism to unify the storage of the runtime data for protecting both control data and non-control data. The memory requirements are constant and small, regardless of the number of deployed defense mechanisms. We store the allowlist in the TrustZone to ensure its integrity and confidentiality. Meanwhile, we perform an offline analysis to detect potential collisions and make corresponding adjustments when it happens. We have implemented our idea on an ARM Cortex-M-based development board. Our evaluation results show a substantial reduction in memory consumption when deploying the proposed CFI and DFI mechanisms, without compromising runtime performance. Specifically, our prototype enforces CFI and DFI at a cost of just 2.09% performance overhead and 32.56% memory overhead on average.more » « less
- 
            eal-time systems with hard timing constrains require known upper bounds on each task’s worst-case execution time (WCET) to determine if all deadlines can be met. One challenge in predictable execution is that Dynamic Random Access Memory (DRAM) cells must be refreshed periodically to maintain data validity, yet memory remains blocked during refresh, which results in overly pessimistic WCET bounds. This work contributes “Colored Refresh” to hide DRAM refresh overhead while preserving real-time schedulability for cyclic executives, which are widely used in highly critical systems. Colored Refresh partitions DRAM memory at rank granularity such that refreshes rotate round-robin from rank to rank. Real-time tasks are assigned different ranks via colored memory allocation. By cooperatively scheduling real-time tasks and refresh operations, memory requests no longer suffer from refresh interference. This reduces memory access latencies for tasks irrespective of DRAM density and size. Hence, Colored Refresh reduces a task’s WCET and makes its execution more predictable.more » « less
- 
            This paper presents Kage: a system that protects the control data of both application and kernel code on microcontroller-based embedded systems. Kage consists of a Kage-compliant embedded OS that stores all control data in separate memory regions from untrusted data, a compiler that transforms code to protect these memory regions efficiently and to add forward-edge control-flow integrity checks, and a secure API that allows safe updates to the protected data. We implemented Kage as an extension to FreeRTOS, an embedded real-time operating system. We evaluated Kage’s performance using the CoreMark benchmark. Kage incurred a 5.2% average run-time overhead and 49.8% code size overhead. Furthermore, the code size overhead was only 14.2% when compared to baseline FreeRTOS with the MPU enabled. We also evaluated Kage’s security guarantees by measuring and analyzing reachable code-reuse gadgets. Compared to FreeRTOS, Kage reduces the number of reachable gadgets from 2,276 to 27, and the remaining 27 gadgets cannot be stitched together to launch a practical attack.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    