Abstract Interstellar neutral atoms enter the heliosphere at a relatively slow speed corresponding to the motion of the Sun through the local interstellar medium, which is approximately 25 km s−1. Neutral hydrogen atoms enter from the approximate location of the Voyager spacecraft and are eventually ionized primarily by collision with thermal solar wind ions. An earlier analysis by Hollick et al. examined low-frequency magnetic waves observed by the Voyager spacecraft from launch through 1990 that are thought to arise from the scattering of newborn interstellar pickup H+and He+. We report an analysis of Voyager 1 observations in 1991, which is the last year of high-resolution magnetic field data that are publicly available, and find 70 examples of low-frequency waves with the characteristics that suggest excitation by pickup H+and 10 examples of waves consistent with excitation by pickup He+. We find a particularly dense cluster of observations at the tail end of what is thought to be a Merged Interaction Region (MIR) that was previously studied by Burlaga & Ness using Voyager 2 observations. This is not unexpected if the MIR is followed by a large rarefaction region, as they tend to be regions of reduced turbulence levels that permit the growth of the waves over the long time periods that are generally required of this instability.
more »
« less
Low-frequency Waves due to Newborn Interstellar Pickup He + Observed by the Ulysses Spacecraft
Abstract We have surveyed magnetic field data from the Ulysses spacecraft and found examples of magnetic waves with the expected characteristics that point to excitation by newborn pickup He+. With interstellar neutrals as the likely source for the pickup ions, we have modeled the ion production rates and used them to produce wave excitation rates that we compare to the background turbulence rates. The source ions are thought to be always present, but the waves are seen when growth rates are comparable to or exceed the turbulence rates. With the exception of the fast latitude scans, and unlike the waves excited by newborn interstellar pickup H+, the waves are seen throughout the Ulysses orbit.
more »
« less
- Award ID(s):
- 2005982
- PAR ID:
- 10587807
- Publisher / Repository:
- Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 923
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 185
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The stability of a realistic multicomponent pickup ion (PUI) velocity distribution derived from a global model of neutral atoms in the heliosphere, which treats hydrogen and helium atoms self-consistently and includes equations for electrons and helium ions, is investigated using linear instability analysis and hybrid simulations. Linear instability analysis shows that the excited oblique mirror waves and the parallel/quasi-parallel Alfvén-cyclotron (AC) waves have lower growth rates than those obtained previously by A. Mousavi et al. for the PUI velocity distributions given by J. Heerikhuisen et al. The PUI scattering by each of the two modes alone is studied. In contrast to the previous investigations, our current simulations using the updated realistic distributions indicate that mirror waves alone do not effectively scatter PUIs in pitch angle. Instead, they primarily contribute to reducing the thermal spread anisotropy of the PUIs originating from the neutral solar wind. The unstable AC waves exhibit lower growth rates but higher saturation levels than the mirror waves. Two-dimensional (2D) simulation results show that when all unstable waves are present, the predominant contributor to the fluctuating magnetic field energy is the AC mode. The AC waves quickly scatter the PUIs with pitch angles away from 90∘toward isotropy, while the PUIs near 90∘pitch angle maintain a degree of anisotropy within our simulation timeframe. Moreover, several 1D and 2D hybrid simulations with different numbers of particles per cell are performed to examine the impact of numerical noise on PUI scattering. Finally, the implications of these results for the Interstellar Boundary Explorer energetic neutral atom ribbon are discussed.more » « less
-
The distribution of turbulence in the heliosphere remains a mystery, due to the complexity in not only modeling the turbulence transport equations but also identifying the drivers of turbulence that vary with time and spatial location. Beyond the ionization cavity (a few astronomical units (AU) from the Sun), the turbulence is driven predominantly by freshly created pickup ions (PUIs), in contrast to the driving by stream shear and compression. Understanding the source characteristics is necessary to refine turbulence transport models and interpret measurements of turbulence and solar wind temperature in the outer heliosphere. Using a recent latitude-dependent solar wind speed model and the ionization rate of neutral interstellar hydrogen (H), we investigate the temporal and spatial variation in the strength of low-frequency turbulence driven by PUIs from 1998 to 2020. We find that the driving rate is stronger during periods of high solar activity and at lower latitudes in the outer heliosphere. The driving rates for parallel and anti-parallel propagating (relative to the background magnetic field) slab turbulence have different spatial and latitude dependences. The calculated generation rate of turbulence by PUIs is an essential ingredient to investigate the latitude dependence of turbulence in the outer heliosphere, which is important to understand the heating of the distant solar wind and the modulation of cosmic rays.more » « less
-
Bulk Properties of Pickup Ions Derived from the Ulysses Solar Wind Ion Composition Spectrometer DataAbstract Nonthermal, pickup ions (PUIs) represent an energetic component of the solar wind (SW). While a number of theoretical models have been proposed to describe the PUI flow, of major importance are in situ measurements providing us with the vital source of model validation. The Solar Wind Ion Composition Spectrometer (SWICS) instrument on board the Ulysses spacecraft was specifically designed for this purpose. Zhang et al. proposed a new, accurate method for the derivation of ion velocity distribution function in the SW frame on the basis of count rates collected by SWICS. We calculate the moments of these distribution functions for protons (H + ) and He + ions along the Ulysses trajectory for a period of 2 months including the Halloween 2003 solar storm. This gives us the time distributions of PUI density and temperature. We compare these with the results obtained earlier for the same interval of time, in which the ion spectra are converted to the SW frame using the narrow-beam approximation. Substantial differences are identified, which are of importance for the interpretation of PUI distributions in the 3D, time-dependent heliosphere. We also choose one of the shocks crossed by Ulysses during this time interval and analyze the distribution functions and PUI bulk properties in front of and behind it. The results are compared with the test-particle calculations and diffusive shock acceleration theory.more » « less
-
Turbulence is ubiquitous in space plasmas. It is one of the most important subjects in heliospheric physics, as it plays a fundamental role in the solar wind—local interstellar medium interaction and in controlling energetic particle transport and acceleration processes. Understanding the properties of turbulence in various regions of the heliosphere with vastly different conditions can lead to answers to many unsolved questions opened up by observations of the magnetic field, plasma, pickup ions, energetic particles, radio and UV emissions, and so on. Several space missions have helped us gain preliminary knowledge on turbulence in the outer heliosphere and the very local interstellar medium. Among the past few missions, the Voyagers have paved the way for such investigations. This paper summarizes the open challenges and voices our support for the development of future missions dedicated to the study of turbulence throughout the heliosphere and beyond.more » « less
An official website of the United States government

