skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic State Tracking of Overhead Powerlines With Real Time State Estimation: a Data-Driven Approach
Abstract This study focuses on laying the groundwork for the effective vibration suppression of power lines using mobile damping robots (MDR). Earlier research shows that effective vibration suppression is achieved by positioning the MDR at the anti-nodes of the power line. This study focuses on accurately estimating the dynamic state of the power line using a data-driven approach, hence identifying the position of the antinode. The entire dynamics of the vibration of the system is estimated from the displacement data of the power line using Dynamic Mode Decomposition (DMD) and the resulting system is stabilized with Tikhonov Regularization. The stabilized system is then used in conjunction with a Kalman Filter to accurately estimate the dynamic state of the power line using minimal displacement. All displacement data used in this study is acquired from a Galerkin model of the power line. This study shows that this method is a viable alternative to existing numerical methods which are often computationally expensive and time-consuming.  more » « less
Award ID(s):
1944032
PAR ID:
10587899
Author(s) / Creator(s):
;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
ISBN:
978-0-7918-8834-6
Format(s):
Medium: X
Location:
Washington, DC, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. While analyses have been performed for fixed masses on power line conductors, they have not been in the context of interactions between the conductor and a mobile damping robot (MDR). There is a need to explore the potential impact of the MDR on the power line and the resulting implications for the MDR’s development as current methods of vibration control do not adequately address fatigue failure caused by wind-induced vibrations (WIV). Fixed passive vibration absorbers (FPVAs) are widely used on power lines, but they are inherently limited by their fixed nature since changes in wind conditions affect absorber performance as conductor mode shapes change. An MDR can overcome these limitations by actively transporting a passive absorber to conductor antinodes where the absorbers can most effectively remove energy from the system. In this paper, we experimentally investigate the effects of an untuned suspended mass on the conductor as an analog for the MDR, and we perform numerical analysis in MATLAB using equations of motion obtained via Hamilton’s Principle. The insights gained from this work lay a foundation to guide future experiments that will better define the operating conditions of the MDR and lead to the creation of an appropriate control framework. 
    more » « less
  2. Abstract Piezoelectric transducers are widely employed in vibration control and energy harvesting. The effective electro-mechanical coupling of a piezoelectric system is related to the inherent capacitance of the piezoelectric transducer. It is known that passive vibration suppression through piezoelectric LC shunt can be enhanced with the integration of negative capacitance which however requires a power supply. This research focuses on the parametric investigation of a self-sustainable negative capacitance where the piezoelectric transducer is concurrently used in both vibration suppression and energy harvesting through LC shunt. The basic idea is to utilize the energy harvesting functionality of the piezoelectric transducer to aid the usage of negative capacitance in terms of power supply. Specifically, the power consumption and circuitry performance with respect to negative capacitance circuit design is analyzed thoroughly. Indeed, the net power generation is the difference between available power in the shunt circuit and the power consumption of the negative capacitance circuit. There exists complex tradeoffs between net power generation and the vibration suppression performance when we use different resistance values in the negative capacitance circuit. It is demonstrated through correlated analytical simulation and experimental study that the proper selection of the resistance values in the negative capacitance circuit can result in vibration suppression enhancement as well as improved net power generation, leading to a self-sustainable negative capacitance scheme. 
    more » « less
  3. Abstract Fixed passive vibration absorbers (FPVAs) are widely used on power lines and other continuous systems, but they are inherently limited since changes in wind conditions affect absorber performance due to changing mode shapes. A mobile damping robot (MDR) can overcome these limitations by actively transporting a passive absorber to conductor antinodes where the absorbers can most effectively remove energy from the system. While many analyses have been performed for fixed masses on power line conductors, they have not been in the context of interactions between the conductor and a mobile damping robot (MDR). There is a need to explore the potential impact of the MDR on the power line and the resulting implications for the MDR’s development as current methods of vibration control do not adequately address fatigue failure caused by wind-induced vibrations (WIV). In this paper, we define a mathematical model of the system and perform numerical analysis in MATLAB® using equations of motion obtained via Hamilton’s Principle. We investigate the adequacy of an experimental test bench for testing. Then we experimentally validate the ability of a mobile robot to transport a mass along a conductor to antinode locations. Experimental results indicate that the robot is able to navigate to the locations of highest amplitude on the cable. The insights gained from this work lay a foundation to guide future experiments that will better define the operating conditions of the MDR and lead to the creation of an appropriate control framework. 
    more » « less
  4. Abstract The active-particle number density is a key parameter for plasma material processing, space propulsion, and plasma-assisted combustion. The traditional actinometry method focuses on measuring the density of the atoms in the ground state, but there is a lack of an effective optical emission spectroscopy method to measure intra-shell excited-state densities. The latter atoms have chemical selectivity and higher energy, and they can easily change the material morphology as well as the ionization and combustion paths. In this work, we present a novel state-resolved actinometry (SRA) method, supported by a krypton line-ratio method for the electron temperature and density, to measure the number densities of nitrogen atoms in the ground and intra-shell excited states. The SRA method is based on a collisional-radiative model, considering the kinetics of atomic nitrogen and krypton including their excited states. The densities measured by our method are compared with those obtained from a dissociative model in a miniature electron cyclotron resonance (ECR) plasma source. Furthermore, the saturation effect, in which the electron density remains constant due to the microwave propagation in an ECR plasma once the power reaches a certain value, is used to verify the electron density measured by the line-ratio method. An ionization balance model is also presented to examine the measured electron temperature. All the values obtained with the different methods are in good agreement with each other, and hence a set of verified rate coefficient data used in our method can be provided. A novel concept, the ‘excited-state system’, is presented to quickly build an optical diagnostic method based on the analysis of quantum number propensity and selection rules. 
    more » « less
  5. This work investigates surface pressure unsteadiness on a compliant panel under a shockwave/boundary-layer interaction (SBLI) induced by a 2D compression ramp with an angle of 20o in a Mach 2 wind tunnel. High-speed digital image correlation (DIC) and fast-response pressure-sensitive paint (PSP) measurements are used to measure the panel displacement and panel and ramp-face surface pressure fluctuations at 5kHz and 20kHz, respectively. The data reduction technique of POD (proper orthogonal decomposition) was employed both for pressure and displacement fields. POD mode distribution for the pressure fields reveals that the first six modes have 60% of the total energy and exhibit low-frequency content for both rigid and compliant panels. The vibration of the compliant panel was seen to alter the energy distribution of the high energy modes as compared to the rigid panel case. The cross-correlations between the displacement and pressure modes were made using the time coefficients. This analysis shows significant correlations were present among the lower modes. The highest correlation was between displacement mode 1 and the pressure mode 4, which stemmed from the upstream of the intermittent region. The analysis was also made for the surrogate shock foot and reattachment lines. The correlation shows that panel vibration lowers the correlation between the shock foot and reattachment line when compared with the rigid panel case. 
    more » « less