Abstract A “virtual mirror” is a promising interface for virtual or augmented reality applications in which users benefit from seeing themselves within the environment, such as serious games for rehabilitation exercise or biological education. While there is extensive work analyzing pointing and providing assistance for first-person perspectives, mirrored third-person perspectives have been minimally considered, limiting the quality of user interactions in current virtual mirror applications. We address this gap with two user studies aimed at understanding pointing motions with a mirror view and assessing visual cues that assist pointing. An initial two-phase preliminary study had users tune and test nine different visual aids. This was followed by in-depth testing of the best four of those visual aids compared with unaided pointing. Results give insight into both aided and unaided pointing with this mirrored third-person view, and compare visual cues. We note a pattern of consistently pointing far in front of targets when first introduced to the pointing task, but that initial unaided motion improves after practice with visual aids. We found that the presence of stereoscopy is not sufficient for enhancing accuracy, supporting the use of other visual cues that we developed. We show that users perform pointing differently when pointing behind and in front of themselves. We finally suggest which visual aids are most promising for 3D pointing in virtual mirror interfaces.
more »
« less
Deformations of acid-mediated invasive tumors in a model with Allee effect
Abstract We consider a Gatenby–Gawlinski-type model of invasive tumors in the presence of an Allee effect. We describe the construction of bistable one-dimensional traveling fronts using singular perturbation techniques in different parameter regimes corresponding to tumor interfaces with, or without, an acellular gap. By extending the front as a planar interface, we perform a stability analysis to long wavelength perturbations transverse to the direction of front propagation and derive a simple stability criterion for the front in two spatial dimensions. In particular we find that in general the presence of the acellular gap indicates transversal instability of the associated planar front, which can lead to complex interfacial dynamics such as the development of finger-like protrusions and/or different invasion speeds.
more »
« less
- Award ID(s):
- 2105816
- PAR ID:
- 10587985
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Mathematical Biology
- Volume:
- 90
- Issue:
- 6
- ISSN:
- 0303-6812
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Esophageal pathologies such as atresia and benign strictures often require surgical reconstruction with autologous tissues to restore organ continuity. Complications such as donor site morbidity and limited tissue availability have spurred the development of acellular grafts for esophageal tissue replacement. Acellular biomaterials for esophageal repair rely on the activation of intrinsic regenerative mechanisms to mediate de novo tissue formation at implantation sites. Previous research has identified signaling cascades involved in neoepithelial formation in a rat model of onlay esophagoplasty with acellular silk fibroin grafts, including phosphoinositide 3‐kinase (PI3K), and protein kinase B (Akt) signaling. However, it is currently unknown how these mechanisms are governed by DNA methylation (DNAme) during esophageal wound healing processes. Reduced‐representation bisulfite sequencing is performed to characterize temporal DNAme dynamics in host and regenerated tissues up to 1 week postimplantation. Overall, global hypermethylation is observed at postreconstruction timepoints and an inverse correlation between promoter DNAme and the expression levels of differentially expressed proteins during regeneration. Site‐specific hypomethylation targets genes associated with immune activation, while hypermethylation occurs within gene bodies encoding PI3K‐Akt signaling components during the tissue remodeling period. The data provide insight into the epigenetic mechanisms during esophageal regeneration following surgical repair with acellular grafts.more » « less
-
We study the existence and stability of propagating fronts in Meinhardt’s multivariable reaction-diffusion model of branching in one spatial dimension. We identify a saddle-node-infinite-period bifurcation of fronts that leads to episodic front propagation in the parameter region below propagation failure and show that this state is stable. Stable constant speed fronts exist only above this parameter value. We use numerical continuation to show that propagation failure is a consequence of the presence of a T-point corresponding to the formation of a heteroclinic cycle in a spatial dynamics description. Additional T-points are identified that are responsible for a large multiplicity of different unstable traveling front-peak states. The results indicate that multivariable models may support new types of behavior that are absent from typical two-variable models but may nevertheless be important in developmental processes such as branching and somitogenesis.more » « less
-
Abstract In this paper, we consider a bistable monotone reaction–diffusion system in cylindrical domains. We first prove the existence of the entire solution emanating from a planar front. Then, it is proved that the entire solution converges to a planar front if the propagation is complete and the domain is bilaterally straight. Finally, we give some geometrical conditions on the domain such that the propagation of the entire solution is complete or incomplete, respectively.more » « less
-
Abstract Poly(3,4‐ethylenenedioxythiophene) or PEDOT is a promising candidate for next‐generation neuronal electrode materials but its weak adhesion to underlying metallic conductors impedes its potential. An effective method of mechanically anchoring the PEDOT within an Au nanorod (Au‐nr) structure is reported and it is demonstrated that it provides enhanced adhesion and overall PEDOT layer stability. Cyclic voltammetry (CV) stress is used to investigate adhesion and stability of spin‐cast and electrodeposited PEDOT. The Au‐nr adhesion layer permits 10 000 CV cycles of coated PEDOT film in phosphate buffered saline solution without delamination nor significant change of the electrochemical impedance, whereas PEDOT coating film on planar Au electrodes delaminates at or below 1000 cycles. Under CV stress, spin‐cast PEDOT on planar Au delaminates, whereas electroplated PEDOT on planar Au encounters surface leaching/decomposition. After 5 weeks of accelerated aging tests at 60 °C, the electrodeposited PEDOT/Au‐nr microelectrodes demonstrate a 92% channel survival compared to only 25% survival for spin‐cast PEDOT on planar films. Furthermore, after a 10 week chronic implantation onto mouse barrel cortex, PEDOT/Au‐nr microelectrodes do not exhibit delamination nor morphological changes, whereas the conventional PEDOT microelectrodes either partially or fully delaminate. Immunohistochemical evaluation demonstrates no or minimal response to the PEDOT implant.more » « less
An official website of the United States government
