skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Universal density shift coefficients for the thermal conductivity and shear viscosity of a unitary Fermi gas
We measure universal temperature-independent density shifts for the thermal conductivity κ T and shear viscosity η , relative to the high temperature limits, for a normal phase unitary Fermi gas confined in a box potential. We show that a time-dependent kinetic theory model enables extraction of the hydrodynamic transport times τ η and τ κ from the time-dependent free decay of a spatially periodic density perturbation, yielding the static transport properties and density shifts, corrected for finite relaxation times. Published by the American Physical Society2024  more » « less
Award ID(s):
2307107
PAR ID:
10588029
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Research
Volume:
6
Issue:
4
ISSN:
2643-1564
Subject(s) / Keyword(s):
Fermi gas uniform density, unitary, hydrodynamics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study parton energy-momentum exchange with the quark gluon plasma (QGP) within a multistage approach composed of in-medium Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution at high virtuality, and (linearized) Boltzmann transport formalism at lower virtuality. This multistage simulation is then calibrated in comparison with high- p T charged hadrons, D mesons, and the inclusive jet nuclear modification factors, using Bayesian model-to-data comparison, to extract the virtuality-dependent transverse momentum broadening transport coefficient q ̂ . To facilitate this undertaking, we develop a quantitative metric for validating the Bayesian workflow, which is used to analyze the sensitivity of various model parameters to individual observables. The usefulness of this new metric in improving Bayesian model emulation is shown to be highly beneficial for future such analyses. Published by the American Physical Society2024 
    more » « less
  2. We present results for the τ 1 and τ 1 a 1-jettiness global event shape distributions, for deep inelastic scattering (DIS), at the N 3 LL + O ( α s 2 ) level of accuracy. These event-shape distributions quantify and characterize the pattern of final state radiation in electron-nucleus collisions. They can be used as a probe of nuclear structure functions, as nuclear medium effects in jet production, and for a precision extraction of the QCD strong coupling. The results presented here, along with the corresponding numerical codes, can be used for analyses with HERA data, in Electron-Ion Collider (EIC) simulation studies, and for eventual comparison with real EIC data. Published by the American Physical Society2024 
    more » « less
  3. A search for the nonresonant production of Higgs boson pairs in the H H b b ¯ τ + τ channel is performed using 140 fb 1 of proton-proton collisions at a center-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. The analysis strategy is optimized to probe anomalous values of the Higgs boson self-coupling modifier κ λ and of the quartic H H V V ( V = W , Z ) coupling modifier κ 2 V . No significant excess above the expected background from Standard Model processes is observed. An observed (expected) upper limit μ H H < 5.9 ( 3.3 ) is set at 95% confidence-level on the Higgs boson pair production cross section normalized to its Standard Model prediction. The coupling modifiers are constrained to an observed (expected) 95% confidence interval of 3.1 < κ λ < 9.0 ( 2.5 < κ λ < 9.3 ) and 0.5 < κ 2 V < 2.7 ( 0.2 < κ 2 V < 2.4 ), assuming all other Higgs boson couplings are fixed to the Standard Model prediction. The results are also interpreted in the context of effective field theories via constraints on anomalous Higgs boson couplings and Higgs boson pair production cross sections assuming different kinematic benchmark scenarios. © 2024 CERN, for the ATLAS Collaboration2024CERN 
    more » « less
  4. We measured the full complex ac conductance of two-dimensional granular In / InO x composites using the mutual inductance technique to explore the transition from a “failed superconductor turned anomalous metal” to a robust superconductor. In this system, room-temperature annealing was adopted to tune the InO x -mediated coupling between In grains, allowing for the observation of both a “true” superconductor-to-insulator transition and the emergence of an intervening anomalous metallic state. In this paper, we show that further annealing increases the intergrain coupling, eliminating the anomalous metallic phase but at the same time preventing the emergence of strong Bose-dominated insulating phase. The complex ac conductance revealed a T 0 finite dissipative response in a finite magnetic field, coexisting with a robust superfluid density. The anomalous power-law spectra for the dissipative response suggest quantum critical behavior as probed in the kilohertz range, and point to signatures of gapless superconductivity in our granular superconducting system. Published by the American Physical Society2025 
    more » « less
  5. We consider the vacuum wave function of a free scalar field theory in space partitioned into two regions, with the field obeying Robin conditions (of parameter κ ) on the interface. A direct integration over fields in a subregion is carried out to obtain the reduced density matrix. This leads to a constructive proof of the Reeh-Schlieder theorem. We analyze the entanglement entropy as a function of the Robin parameter κ . We also consider a specific conditional probability as another measure of entanglement which is more amenable to analysis of the dependence on interface conditions. Finally, we discuss a direct calculation of correlation functions and how it gives an alternate route to the reduced density matrix. Published by the American Physical Society2025 
    more » « less