We report the first evidence for the transition with a significance of 3.5 standard deviations. The decay branching fraction is measured to be , which is noticeably smaller than expected. We also set upper limits on transitions of , and , at the 90% confidence level. These results are obtained with a data sample collected near the resonance with the Belle detector at the KEKB asymmetric-energy collider. Published by the American Physical Society2024
more »
« less
One-jettiness DIS event shape at N3LL+O(αs2)
We present results for the and 1-jettiness global event shape distributions, for deep inelastic scattering (DIS), at the level of accuracy. These event-shape distributions quantify and characterize the pattern of final state radiation in electron-nucleus collisions. They can be used as a probe of nuclear structure functions, as nuclear medium effects in jet production, and for a precision extraction of the QCD strong coupling. The results presented here, along with the corresponding numerical codes, can be used for analyses with HERA data, in Electron-Ion Collider (EIC) simulation studies, and for eventual comparison with real EIC data. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 1945471
- PAR ID:
- 10632247
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review D
- Volume:
- 110
- Issue:
- 1
- ISSN:
- 2470-0010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The first observation of the decay and measurement of the branching ratio of to are presented. The and mesons are reconstructed using their dimuon decay modes. The results are based on proton-proton colliding beam data from the LHC collected by the CMS experiment at in 2016–2018, corresponding to an integrated luminosity of . The branching fraction ratio is measured to be , where the last uncertainty comes from the uncertainties in the branching fractions of the charmonium states. New measurements of the baryon mass and natural width are also presented, using the final state, where the baryon is reconstructed through the decays , , , and . Finally, the fraction of baryons produced from decays is determined. © 2024 CERN, for the CMS Collaboration2024CERNmore » « less
-
The decay chains are observed, and the spin-parity of baryons is determined for the first time. The measurement is performed using proton-proton collision data at a center-of-mass energy of , corresponding to an integrated luminosity of , recorded by the LHCb experiment between 2016 and 2018. The spin-parity of the baryons is determined to be with a significance of more than ( ) compared to all other tested hypotheses. The up-down asymmetries of the transitions are measured to be ( ), consistent with maximal parity violation, where the first uncertainty is statistical and the second is systematic. These results support the hypothesis that the baryons correspond to the first -wave -mode excitation of the flavor triplet. © 2025 CERN, for the LHCb Collaboration2025CERNmore » « less
-
We search for excited charmed baryons in the system using a data sample corresponding to an integrated luminosity of . The data were collected by the Belle detector at the KEKB asymmetric-energy collider. No significant signals are found in the mass spectrum, including the known and . Clear and signals are observed in the mass spectrum. We set upper limits at 90% credibility level on ratios of branching fractions of and decaying to relative to of for the and for the . We measure ratios of branching fractions of and decaying to relative to of for the and for the . Published by the American Physical Society2024more » « less
-
The inclusive production of the charm-strange baryon is measured for the first time via its semileptonic decay into at midrapidity ( ) in proton-proton (pp) collisions at the center-of-mass energy with the ALICE detector at the LHC. The transverse momentum ( ) differential cross section multiplied by the branching ratio is presented in the interval . The branching-fraction ratio is measured to be (stat) (syst). Comparisons with other experimental measurements, as well as with theoretical calculations, are presented. © 2024 CERN, for the ALICE Collaboration2024CERNmore » « less
An official website of the United States government

