skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New metric improving Bayesian calibration of a multistage approach studying hadron and inclusive jet suppression
We study parton energy-momentum exchange with the quark gluon plasma (QGP) within a multistage approach composed of in-medium Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution at high virtuality, and (linearized) Boltzmann transport formalism at lower virtuality. This multistage simulation is then calibrated in comparison with high- p T charged hadrons, D mesons, and the inclusive jet nuclear modification factors, using Bayesian model-to-data comparison, to extract the virtuality-dependent transverse momentum broadening transport coefficient q ̂ . To facilitate this undertaking, we develop a quantitative metric for validating the Bayesian workflow, which is used to analyze the sensitivity of various model parameters to individual observables. The usefulness of this new metric in improving Bayesian model emulation is shown to be highly beneficial for future such analyses. Published by the American Physical Society2024  more » « less
Award ID(s):
2004571 2111568
PAR ID:
10518552
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Publisher / Repository:
APS
Date Published:
Journal Name:
Physical Review C
Volume:
109
Issue:
6
ISSN:
2469-9985
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Collaboration reports a new determination of the jet transport parameter q ̂ in the quark-gluon plasma (QGP) using Bayesian inference, incorporating all available inclusive hadron and jet yield suppression data measured in heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC). This multi-observable analysis extends the previously published Bayesian inference determination of q ̂ , which was based solely on a selection of inclusive hadron suppression data. is a modular framework incorporating detailed dynamical models of QGP formation and evolution, and jet propagation and interaction in the QGP. Virtuality-dependent partonic energy loss in the QGP is modeled as a thermalized weakly coupled plasma, with parameters determined from Bayesian calibration using soft-sector observables. This Bayesian calibration of q ̂ utilizes active learning, a machine-learning approach, for efficient exploitation of computing resources. The experimental data included in this analysis span a broad range in collision energy and centrality, and in transverse momentum. In order to explore the systematic dependence of the extracted parameter posterior distributions, several different calibrations are reported, based on combined jet and hadron data; on jet or hadron data separately; and on restricted kinematic or centrality ranges of the jet and hadron data. Tension is observed in comparison of these variations, providing new insights into the physics of jet transport in the QGP and its theoretical formulation. Published by the American Physical Society2025 
    more » « less
  2. Small particles fall through sheared beds of larger particles in settings ranging from geophysics to industry, but the study of large-to-small size ratios R , spanning the trapping threshold R t , has been neglected. In simulations of noncohesive spheres for R < R t , the small-sphere vertical velocity v p first increases with shear rate γ ̇ as trapping time decreases, but v p then decreases as velocity fluctuations frustrate downward mobility. For R > R t ,   v p is constant at low γ ̇ , but again decreases at high γ ̇ . We model these behaviors and discuss analogies with electron transport in solids. Published by the American Physical Society2024 
    more » « less
  3. An investigation of high-transverse-momentum (high- p T ) photon-triggered jets in proton-proton ( p p ) and ion-ion ( A A ) collisions at s N N = 0.2 and 5.02 TeV is carried out, using the multistage description of in-medium jet evolution. Monte Carlo simulations of hard scattering and energy loss in heavy-ion collisions are performed using parameters tuned in a previous study of the nuclear modification factor ( R A A ) for inclusive jets and high- p T hadrons. We obtain a good reproduction of the experimental data for photon-triggered jet R A A , as measured by the ATLAS detector, the distribution of the ratio of jet to photon p T ( X J γ ), measured by both CMS and ATLAS, and the photon-jet azimuthal correlation as measured by CMS. We obtain a moderate description of the photon-triggered jet I A A , as measured by STAR. A noticeable improvement in the comparison is observed when one goes beyond prompt photons and includes bremsstrahlung and decay photons, revealing their significance in certain kinematic regions, particularly at X J γ > 1 . Moreover, azimuthal angle correlations demonstrate a notable impact of bremsstrahlung photons on the distribution, emphasizing their role in accurately describing experimental results. This work highlights the success of the multistage model of jet modification to straightforwardly predict (this set of) photon-triggered jet observables. This comparison, along with the role played by bremsstrahlung photons, has important consequences on the inclusion of such observables in a future Bayesian analysis. Published by the American Physical Society2025 
    more » « less
  4. We employ first-principles quantum field theoretical methods to investigate the longitudinal and transverse electrical conductivities of a strongly magnetized hot quantum electrodynamics (QED) plasma at the leading order in coupling. The analysis employs the fermion damping rate in the Landau-level representation, calculated with full kinematics and exact amplitudes of one-to-two and two-to-one QED processes. In the relativistic regime, both conductivities exhibit an approximate scaling behavior described by σ , = T σ ˜ , , where σ ˜ , are functions of the dimensionless ratio | e B | / T 2 (with T denoting temperature and B magnetic field strength). We argue that the mechanisms for the transverse and longitudinal conductivities differ significantly, leading to a strong suppression of the former in comparison to the latter. Published by the American Physical Society2024 
    more » « less
  5. Accelerator based neutrino oscillation experiments seek to measure the relative number of electron and muon (anti)neutrinos at different L / E values. However high statistics studies of neutrino interactions are almost exclusively measured using muon (anti)neutrinos since the dominant flavor of neutrinos produced by accelerator based beams are of the muon type. This work reports new measurements of electron (anti)neutrinos interactions in hydrocarbon, obtained by strongly suppressing backgrounds initiated by muon flavor (anti)neutrinos. Double differential cross sections as a function of visible energy transfer, E avail , and transverse momentum transfer, p T , or three momentum transfer, q 3 are presented. Published by the American Physical Society2024 
    more » « less