Accelerator based neutrino oscillation experiments seek to measure the relative number of electron and muon (anti)neutrinos at differentvalues. However high statistics studies of neutrino interactions are almost exclusively measured using muon (anti)neutrinos since the dominant flavor of neutrinos produced by accelerator based beams are of the muon type. This work reports new measurements of electron (anti)neutrinos interactions in hydrocarbon, obtained by strongly suppressing backgrounds initiated by muon flavor (anti)neutrinos. Double differential cross sections as a function of visible energy transfer,, and transverse momentum transfer,, or three momentum transfer,are presented.
This content will become publicly available on June 1, 2025
We study parton energy-momentum exchange with the quark gluon plasma (QGP) within a multistage approach composed of in-medium Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution at high virtuality, and (linearized) Boltzmann transport formalism at lower virtuality. This multistage simulation is then calibrated in comparison with high-charged hadrons,mesons, and the inclusive jet nuclear modification factors, using Bayesian model-to-data comparison, to extract the virtuality-dependent transverse momentum broadening transport coefficient. To facilitate this undertaking, we develop a quantitative metric for validating the Bayesian workflow, which is used to analyze the sensitivity of various model parameters to individual observables. The usefulness of this new metric in improving Bayesian model emulation is shown to be highly beneficial for future such analyses.
- NSF-PAR ID:
- 10518552
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- APS
- Date Published:
- Journal Name:
- Physical Review C
- Volume:
- 109
- Issue:
- 6
- ISSN:
- 2469-9985
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Published by the American Physical Society 2024 -
We present the first calculation of the pion gluon moment from lattice QCD in the continuum-physical limit. The calculation is done using clover fermions for the valence action with three pion masses, 220, 310 and 690 MeV, and three lattice spacings, 0.09, 0.12, and 0.15 fm, using ensembles generated by MILC Collaboration withflavors of highly improved staggered quarks (HISQ). On the lattice, we nonperturbatively renormalize the gluon operator in RI/MOM scheme using the cluster-decomposition error reduction (CDER) technique to enhance the signal-to-noise ratio of the renormalization constant. We extrapolate the pion gluon moment to the continuum-physical limit and obtainin thescheme at 2 GeV, with first error being the statistical error and uncertainties in nonperturbative renormalization, and the second being a systematic uncertainty estimating the effect of ignoring quark mixing. Our pion gluon momentum fraction has a central value lower than two recent single-ensemble lattice-QCD results near physical pion mass but is consistent with the recent global fits by JAM and xFitter and with most QCD-model estimates.
Published by the American Physical Society 2024 -
A search for hidden-charm pentaquark states decaying to a range ofandfinal states, as well as doubly charmed pentaquark states toand, is made using samples of proton-proton collision data corresponding to an integrated luminosity ofrecorded by the LHCb detector at. Since no significant signals are found, upper limits are set on the pentaquark yields relative to that of thebaryon in thedecay mode. The known pentaquark states are also investigated, and their signal yields are found to be consistent with zero in all cases.
© 2024 CERN, for the LHCb Collaboration 2024 CERN -
There is a significant interest in testing quantum entanglement and Bell inequality violation in high-energy experiments. Since the analyses in high-energy experiments are performed with events statistically averaged over phase space, the states used to determine observables depend on the choice of coordinates through an event-dependent basis and are thus not genuine quantum states, but rather “fictitious states.” We find that the basis which diagonalizes the spin-spin correlations is optimal for constructing fictitious states to test the violation of Bell’s inequality. This result is applied directly to the bipartite qubit system of a top and antitop produced at a hadron collider. We show that the beam axis is the optimal basis choice near thethreshold production for measuring Bell inequality violation, while at high transverse momentum the basis that aligns along the momentum direction of the top is optimal.
Published by the American Physical Society 2024 -
This paper presents a search for pair production of higgsinos, the supersymmetric partners of the Higgs bosons, in scenarios with gauge-mediated supersymmetry breaking. Each higgsino is assumed to decay into a Higgs boson and a nearly massless gravitino. The search targets events where each Higgs boson decays into, leading to a reconstructed final state with at least three energetic-jets and missing transverse momentum. Two complementary analysis channels are used, with each channel specifically targeting either low or high values of the higgsino mass. The low-mass (high-mass) channel exploitsofdata collected by the ATLAS detector during Run 2 of the Large Hadron Collider. No significant excess above the Standard Model prediction is found. At 95% confidence level, masses between 130 GeV and 940 GeV are excluded for higgsinos decaying exclusively into Higgs bosons and gravitinos. Exclusion limits as a function of the higgsino decay branching ratio to a Higgs boson are also reported.
© 2024 CERN, for the ATLAS Collaboration 2024 CERN