skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Catalytic Enantioselective Protonation of Gold Enolates Enabled by Cooperative Gold(I) Catalysis
Enantioselective protonation is a versatile approach to the construction of tertiary α-stereocenters, which are common structural motifs in various natural products and biologically relevant compounds. Herein we report a mild access to these chiral centers using cooperative gold(I) catalysis. From cyclic ketone enol carbonates, this asymmetric catalysis provides highly enantioselective access to cyclic ketones featuring an α tertiary chiral center, including challenging 2-methylsuberone. In combination with the gold-catalyzed formation of cyclopentadienyl carbonates in a one-pot, two-step process, this chemistry enables expedient access to synthetically versatile α′-chiral cyclopentenones with excellent enantiomeric excesses from easily accessible enynyl carbonate substrates.  more » « less
Award ID(s):
2247934
PAR ID:
10588197
Author(s) / Creator(s):
; ;
Publisher / Repository:
the American Chemical Society
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
146
Issue:
6
ISSN:
0002-7863
Page Range / eLocation ID:
3598 to 3602
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Enantioselective, intermolecular alkene arylamination was achieved through gold redox catalysis. Screening of ligands revealed chiral P,N ligands as the optimal choice, giving alkene aminoarylation with good yields (up to 80 %) and excellent stereoselectivity (up to 99 : 1er). As the first example of enantioselective gold redox catalysis, this work confirmed the feasibility of applying a chiral ligand at the gold(I) stage, with the stereodetermining step (SDS) at the gold(III) intermediate, thus opening up a new way to conduct gold redox catalysis with stereochemistry control. 
    more » « less
  2. Abstract Cyclopentene rings possessing a chiral quaternary center are important structural motifs found in various natural products. In this work, we disclose expedient and efficient access to this class of synthetically valuable structuresviahighly enantioselective desymmetrization of prochiral propargylic alcohols. The efficient chirality induction in this asymmetric gold catalysis is achievedviatwo‐point bindings between a gold catalyst featuring a bifunctional phosphine ligand and the substrate homopropargylic alcohol moiety—an H‐bonding interaction between the substrate HO group and a ligand phosphine oxide moiety and the gold‐alkyne complexation. The propargylic alcohol substrates can be prepared readilyviapropargylation of enoate and ketone precursors. In addition to monocyclic cyclopentenes, spirocyclic and bicyclic ones are formed with additional neighboring chiral centers of flexible stereochemistry in addition to the quaternary center. This work represents rare gold‐catalyzed highly enantioselective cycloisomerization of 1,5‐enynes. Density functional theory (DFT) calculations support the chirality induction model and suggest that the rate acceleration enabled by the bifunctional ligand can be attributed to a facilitated protodeauration step at the end of the catalysis. 
    more » « less
  3. Abstract A gold(I)‐catalyzed enantioselective dearomatization is achieved via metal‐chiral ligand cooperation. A new and divergent synthesis of chiral bifunctional binaphthyl‐2‐ylphosphines is developed to allow rapid access to these ligands, which in turn facilitate the application of this chemistry to a broad substrate scope including 1‐naphthols, 2‐naphthols, and phenols. Enantiomeric excesses up to 98 % are achieved via selective acceleration of one enantiomer formation enabled by hydrogen bonding between substrate and ligand remote basic group. DFT calculations lend support to the cooperative catalysis and substantiate the reaction stereochemical outcomes. 
    more » « less
  4. Abstract The first chiral helicene‐NHC gold(I) complexes efficient in enantioselective catalysis were prepared. The L‐shaped chiral ligand is composed of an imidazo[1,5‐a]pyridin‐3‐ylidene (IPy) scaffold laterally substituted by a configurationally stable [5]‐helicenoid unit. The chiral information was introduced in a key post‐functionalization step of a NHC‐gold(I) complex bearing a symmetrical anionic fluoreno[5]helicene substituent, leading to a racemic mixture of complexes featuring three correlated elements of chirality, namely central, axial and helical chirality. After HPLC enantiomeric resolution, X‐ray crystallography and theoretical calculations enabled structural and stereochemical characterization of these configurationally stable NHC‐gold(I) complexes. The high potential in asymmetric catalysis is demonstrated in the benchmark cycloisomerization of N‐tethered 1,6‐enynes with up to 95 : 5 er. 
    more » « less
  5. null (Ed.)
    The surfaces of chemically synthesized spherical gold NPs (Au-NPs) have been modified using chiral L- or D-penicillamine (Pen) in order to impart enantioselective adsorption properties. These chiral Au-NPs have been used to demonstrate enantioselective adsorption of racemic propylene oxide (PO) from aqueous solution. In the past we have studied enantioselective adsorption of racemic PO on L- or D-cysteine (Cys)-coated Au-NPs. This prior work suggested that adsorption of PO on Cys-coated Au-NPs equilibrates within an hour. In this work, we have studied the effect of time on the enantioselective adsorption of racemic PO from solution onto chiral Pen/Au-NPs. Enantioselective adsorption of PO on chiral Pen/Au-NPs is time-dependent but reaches a steady state after ~18 h at room temperature. More importantly, L- or D-Pen/Au-NPs are shown to adsorb R- or S-PO enantiospecifically and to separate the two PO enantiomers from racemic mixtures of RS-PO. 
    more » « less