Abstract A controversial aspect of Pliocene (5.3–2.6 Ma) climate is whether El Niño‐like (El Padre) conditions, characterized by a reduced trans‐equatorial sea‐surface temperature (SST) gradient, prevailed across the Pacific. Evidence for El Padre is chiefly based on reconstructions of sea‐surface conditions derived from the oxygen isotope (δ18O) and Mg/Ca compositions of shells belonging to the planktic foraminiferTrilobatus sacculifer. However, fossil shells of this species are a mixture of multiple carbonate phases—pre‐gametogenic, gametogenic (reproductive), and diagenetic calcites—that formed under different physiological and/or environmental conditions and are averaged in conventional whole‐shell analyses. Through in situ measurements of micrometer‐scale domains within Pliocene‐aged shells ofT. sacculiferfrom Ocean Drilling Program Site 806 in the western equatorial Pacific, we show that the δ18O of gametogenic calcite is 0.6–0.8‰ higher than pre‐gametogenic calcite, while the Mg/Ca ratios of these two phases are the same. Both the whole‐shell and pre‐gametogenic Mg/Ca records indicate that average early Pliocene SSTs were ~1°C warmer than modern, with present‐day SSTs being established during the latest Pliocene and early Pleistocene (~3.0–2.0 Ma). The measurement of multiple calcite phases by whole‐shell δ18O analyses masks a late Pliocene to earliest Pleistocene (3.6–2.2 Ma) decrease in seawater δ18O (δ18Osw) values reconstructed from in situ pre‐gametogenic δ18O and Mg/Ca measurements. Our novel δ18Oswrecord indicates that sea‐surface salinities in the west Pacific warm pool were higher than modern prior to ~3.5 Ma, which is consistent with more arid conditions under an El Padre state.
more »
« less
This content will become publicly available on April 1, 2026
Early Pliocene Shoaling of the Central American Seaway Reconstructed From Foraminifera‐Bound Nitrogen and Oxygen Isotopes
The formation of the Isthmus of Panama closed the Central American Seaway, severing the only Late Cenozoic low‐latitude connection between the Pacific and Atlantic Oceans. Here we clarify the Early Pliocene (5.3–3.6 million years ago [Ma]) sequence of events associated with the shoaling of the Central American Seaway based on differences in upper ocean biogeochemical properties between the eastern tropical North Pacific (ETNP) and the Caribbean Sea. Foraminifera‐bound nitrogen isotopes (FB‐δ15N) are elevated in the ETNP relative to the Caribbean Sea throughout the Early Pliocene. Whereas ETNP FB‐δ15N shows no long‐term trend across the Early Pliocene, FB‐δ15N in the Caribbean Sea declines by ∼0.5‰ between 4.6 and 4.5 Ma, and by an additional ∼1‰ between 4.35 and 4.25 Ma. We interpret the divergence between ETNP and Caribbean Sea FB‐δ15N to indicate progressive isolation of their subsurface nutrient pools due to CAS shoaling. The oxygen isotopic composition of seawater (δ18Osw) derived from planktonic foraminiferδ18O and Mg/Ca shows a small but variable gradient between the ETNP and Caribbean Sea over the Early Pliocene, with a trend toward a largerδ18Oswgradient after 4.25 Ma. We suggest that the development of persistent chemical differences in both thermocline nutrients and surface waters between the ETNP and Caribbean Sea after 4.1 Ma reflects the cessation of basin‐scale oceanic exchanges across the Central American Seaway.
more »
« less
- PAR ID:
- 10588443
- Publisher / Repository:
- American Geophysical Union/Wiley
- Date Published:
- Journal Name:
- Paleoceanography and Paleoclimatology
- Volume:
- 40
- Issue:
- 4
- ISSN:
- 2572-4517
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Early Late Cretaceous (∼90–100 Ma) Sea surface temperatures (SST) records suggest extremely warm Southern Hemisphere high latitudes and a meridional gradient as low as 5°C, attributed to elevated atmospheric CO2. Climate models have been unable to reproduce such extreme warmth, questioning model performance and/or the validity of SSTs reconstructions. Indeed, the latter partly rely on the measurement of oxygen isotopic composition of marine organisms (δ18Oc), a proxy that requires knowledge of the δ18O of past seawater (δ18Osw). Here we use the water isotope‐enabled Community Earth System Model (iCESM1.2) to investigate how paleogeography and pCO2affect δ18Oswdistribution and our understanding of Cenomanian‐Turonian SSTs. Our simulations suggest that the semi‐isolation of southern South Atlantic‐Indian Ocean resulted in locally very negative δ18Oswexplaining low δ18Ocmeasured on planktonic foraminifera. Accounting for this δ18Oswspatio‐temporal variability increases the estimated meridional temperature gradient by 5°C and narrows the gap between model and proxy‐based reconstructions.more » « less
-
Abstract Earth's hydrological cycle was profoundly perturbed by massive carbon emissions during an ancient (56 Ma) global warming event referred to as the Paleocene‐Eocene thermal maximum (PETM). One approach to gaining valuable insight into the response of the hydrological cycle is to construct sea‐surface salinity (SSS) records that can be used to gauge changes in the rates of evaporation and precipitation during the PETM in such climatically sensitive areas as the circum‐Antarctic region. Here, we pair oxygen isotope (δ18O) and magnesium‐calcium (Mg/Ca) measurements to reconstruct PETM sea‐surface temperatures (SSTs) and δ18O composition of seawater (δ18Osw) at austral Site 690 (Weddell Sea). Several discrepancies emerge between the δ18O‐ and Mg/Ca‐based SST records, with the latter indicating that the earliest PETM was punctuated by a short‐lived ~4°C increase in local SSTs. Conversion of the δ18Oswvalues to SSS reveals a ~4 ppt decrease ~50 ka after peak PETM warming at Site 690. This negative SSS (δ18Osw) anomaly coincides with a prominent minimum in the planktic foraminifer δ18O record published for the Site 690 PETM section. Thus, our revised interpretation posits that this δ18O minimum signals a decrease in surface‐ocean δ18Oswfostered by a transient increase in mean annual precipitation in the Weddell Sea region. The results of this study corroborate the view that the poleward flux of atmospheric moisture temporarily increased during a distinctive stage of the PETM.more » « less
-
Abstract Stable isotope‐based reconstructions of past ocean salinity and hydroclimate depend on accurate, regionally constrained relationships between the stable oxygen isotopic composition of seawater (δ18Osw) and salinity in the surface ocean. An increasing number of δ18Oswobservations suggest greater spatial variability in this relationship than previously considered, highlighting the need to reassess these relationships on a global scale. Here, we use available, paired δ18Oswand salinity data (N = 11,119) to create global interpolations of each variable. We then use a self‐organizing map, a specialized form of machine learning, to define 19 regions with unique δ18Osw‐salinity relationships in the surface (<50 m) ocean. Inclusion of atmospheric moisture‐related variables and oceanic tracer data in additional self‐organizing map experiments indicates global surface δ18Osw‐salinity spatial patterns are strongly forced by the atmosphere, as the SOM spatial output is highly similar despite no overlapping input data. Our approach is a useful update to the previously delimited regions, and highlights the utility of neural network pattern extraction in spatiotemporally sparse data sets.more » « less
-
Abstract Stable oxygen isotopic ratios in corals (δ18Ocoral) are commonly utilized to reconstruct climate variability beyond the limit of instrumental observations. These measurements provide constraints on past seawater temperature, due to the thermodynamics of isotopic fractionation, but also past salinity, as both salinity and seawater δ18O (δ18Osw) are similarly affected by precipitation/evaporation, advection, and other processes. We use historical observations, isotope‐enabled model simulations, and the PAGES Iso2k database to assess the potential of δ18Ocoralto provide information on past salinity. Using ‘‘pseudocorals’’ to represent δ18Ocoralas a function of observed or simulated temperature and salinity/δ18Osw, we find that δ18Oswcontributes up to 89% of δ18Ocoralvariability in the Western Pacific Warm Pool. Although uncertainty in the δ18Osw‐salinity relationship influences the inferred salinity variability, corals from these sites could provide valuable δ18Oswreconstructions. Coordinated in situ monitoring of salinity and δ18Oswis vital for improving estimates of hydroclimatic change.more » « less
An official website of the United States government
