In traditional models of opinion dynamics, each agent in a network has an opinion and changes in opinions arise from pairwise (i.e., dyadic) interactions between agents. However, in many situations, groups of individuals possess a collective opinion that can differ from the opinions of their constituent individuals. In this paper, we study the effects of group opinions on opinion dynamics. We formulate a hypergraph model in which both individual agents and groups of three agents have opinions, and we examine how opinions evolve through both dyadic interactions and group memberships. We find for some parameter values that the presence of group opinions can lead to oscillatory and excitable opinion dynamics. In the oscillatory regime, the mean opinion of the agents in a network has self-sustained oscillations. In the excitable regime, finite-size effects create large but short-lived opinion swings (as in social fads). We develop a mean-field approximation of our model and obtain good agreement with direct numerical simulations. We also show—both numerically and via our mean-field description—that oscillatory dynamics occur only when the numbers of dyadic and polyadic interactions of the agents are not completely correlated. Our results illustrate how polyadic structures, such as groups of agents, can have important effects on collective opinion dynamics.
more »
« less
Model reconstruction from temporal data for coupled oscillator networks
In a complex system, the interactions between individual agents often lead to emergent collective behavior such as spontaneous synchronization, swarming, and pattern formation. Beyond the intrinsic properties of the agents, the topology of the network of interactions can have a dramatic influence over the dynamics. In many studies, researchers start with a specific model for both the intrinsic dynamics of each agent and the interaction network and attempt to learn about the dynamics of the model. Here, we consider the inverse problem: given data from a system, can one learn about the model and the underlying network? We investigate arbitrary networks of coupled phase oscillators that can exhibit both synchronous and asynchronous dynamics. We demonstrate that, given sufficient observational data on the transient evolution of each oscillator, machine learning can reconstruct the interaction network and identify the intrinsic dynamics.
more »
« less
- Award ID(s):
- 1813752
- PAR ID:
- 10588472
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Chaos: An Interdisciplinary Journal of Nonlinear Science
- Volume:
- 29
- Issue:
- 10
- ISSN:
- 1054-1500
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this article, we consider the problem of stabilizing a class of degenerate stochastic processes, which are constrained to a bounded Euclidean domain or a compact smooth manifold, to a given target probability density. This stabilization problem arises in the field of swarm robotics, for example, in applications where a swarm of robots is required to cover an area according to a target probability density. Most existing works on modeling and control of robotic swarms that use partial differential equation (PDE) models assume that the robots' dynamics are holonomic and, hence, the associated stochastic processes have generators that are elliptic. We relax this assumption on the ellipticity of the generator of the stochastic processes, and consider the more practical case of the stabilization problem for a swarm of agents whose dynamics are given by a controllable driftless control-affine system. We construct state-feedback control laws that exponentially stabilize a swarm of nonholonomic agents to a target probability density that is sufficiently regular. State-feedback laws can stabilize a swarm only to target probability densities that are positive everywhere. To stabilize the swarm to probability densities that possibly have disconnected supports, we introduce a semilinear PDE model of a collection of interacting agents governed by a hybrid switching diffusion process. The interaction between the agents is modeled using a (mean-field) feedback law that is a function of the local density of the swarm, with the switching parameters as the control inputs. We show that under the action of this feedback law, the semilinear PDE system is globally asymptotically stable about the given target probability density. The stabilization strategies with and without agent interactions are verified numerically for agents that evolve according to the Brockett integrator; the strategy with interactions is additionally verified for agents that evolve according to an underactuated s...more » « less
-
Learning multi-agent system dynamics has been extensively studied for various real-world applications, such as molecular dynamics in biology, multi-body system in physics, and particle dynamics in material science. Most of the existing models are built to learn single system dynamics, which learn the dynamics from observed historical data and predict the future trajectory. In practice, however, we might observe multiple systems that are generated across different environments, which differ in latent exogenous factors such as temperature and gravity. One simple solution is to learn multiple environment-specific models, but it fails to exploit the potential commonalities among the dynamics across environments and offers poor prediction results where per-environment data is sparse or limited. Here, we present GG-ODE (Generalized Graph Ordinary Differential Equations), a machine learning framework for learning continuous multi-agent system dynamics across environments. Our model learns system dynamics using neural ordinary differential equations (ODE) parameterized by Graph Neural Networks (GNNs) to capture the continuous interaction among agents. We achieve the model generalization by assuming the dynamics across different environments are governed by common physics laws that can be captured via learning a shared ODE function. The distinct latent exogenous factors learned for each environment are incorporated into the ODE function to account for their differences. To improve model performance, we additionally design two regularization losses to (1) enforce the orthogonality between the learned initial states and exogenous factors via mutual information minimization; and (2) reduce the temporal variance of learned exogenous factors within the same system via contrastive learning. Experiments over various physical simulations show that our model can accurately predict system dynamics, especially in the long range, and can generalize well to new systems with few observations.more » « less
-
null (Ed.)Networks of coupled oscillators are some of the most studied objects in the theory of dynamical systems. Two important areas of current interest are the study of synchrony in highly disordered systems and the modeling of systems with adaptive network structures. Here, we present a single approach to both of these problems in the form of "KuraNet", a deep-learning-based system of coupled oscillators that can learn to synchronize across a distribution of disordered network conditions. The key feature of the model is the replacement of the traditionally static couplings with a coupling function which can learn optimal interactions within heterogeneous oscillator populations. We apply our approach to the eponymous Kuramoto model and demonstrate how KuraNet can learn data-dependent coupling structures that promote either global or cluster synchrony. For example, we show how KuraNet can be used to empirically explore the conditions of global synchrony in analytically impenetrable models with disordered natural frequencies, external field strengths, and interaction delays. In a sequence of cluster synchrony experiments, we further show how KuraNet can function as a data classifier by synchronizing into coherent assemblies. In all cases, we show how KuraNet can generalize to both new data and new network scales, making it easy to work with small systems and form hypotheses about the thermodynamic limit. Our proposed learning-based approach is broadly applicable to arbitrary dynamical systems with wide-ranging relevance to modeling in physics and systems biology.more » « less
-
We study a model-free federated linear quadratic regulator (LQR) problem where M agents with unknown, distinct yet similar dynamics collaboratively learn an optimal policy to minimize an average quadratic cost while keeping their data private. To exploit the similarity of the agents' dynamics, we propose to use federated learning (FL) to allow the agents to periodically communicate with a central server to train policies by leveraging a larger dataset from all the agents. With this setup, we seek to understand the following questions: (i) Is the learned common policy stabilizing for all agents? (ii) How close is the learned common policy to each agent's own optimal policy? (iii) Can each agent learn its own optimal policy faster by leveraging data from all agents? To answer these questions, we propose a federated and model-free algorithm named FedLQR. Our analysis overcomes numerous technical challenges, such as heterogeneity in the agents' dynamics, multiple local updates, and stability concerns. We show that FedLQR produces a common policy that, at each iteration, is stabilizing for all agents. We provide bounds on the distance between the common policy and each agent's local optimal policy. Furthermore, we prove that when learning each agent's optimal policy, FedLQR achieves a sample complexity reduction proportional to the number of agents M in a low-heterogeneity regime, compared to the single-agent setting.more » « less
An official website of the United States government
