skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Neural Network Reconstruction of the Electron Density of High Energy Density Plasmas From Under-Resolved Interferograms
Award ID(s):
1943939
PAR ID:
10588554
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Plasma Science
Volume:
52
Issue:
12
ISSN:
0093-3813
Page Range / eLocation ID:
5581 to 5596
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The EXospheric TEMperatures on a PoLyhedrAl gRid (EXTEMPLAR) method predicts the neutral densities in the thermosphere. The performance of this model has been evaluated through a comparison with the Air Force High Accuracy Satellite Drag Model (HASDM). The Space Environment Technologies (SET) HASDM database that was used for this test spans the 20 years 2000 through 2019, containing densities at 3 hr time intervals at 25 km altitude steps, and a spatial resolution of 10° latitude by 15° longitude. The upgraded EXTEMPLAR that was tested uses the newer Naval Research Laboratory MSIS 2.0 model to convert global exospheric temperature values to neutral density as a function of altitude. The revision also incorporated time delays that varied as a function of location, between the total Poynting flux in the polar regions and the exospheric temperature response. The density values from both models were integrated on spherical shells at altitudes ranging from 200 to 800 km. These sums were compared as a function of time. The results show an excellent agreement at temporal scales ranging from hours to years. The EXTEMPLAR model performs best at altitudes of 400 km and above, where geomagnetic storms produce the largest relative changes in neutral density. In addition to providing an effective method to compare models that have very different spatial resolutions, the use of density totals at various altitudes presents a useful illustration of how the thermosphere behaves at different altitudes, on time scales ranging from hours to complete solar cycles. 
    more » « less
  2. ABSTRACT We examine the evolution of the phase diagram of the low-density intergalactic medium during the Epoch of Reionization in simulation boxes with varying reionization histories from the Cosmic Reionization on Computers project. The probability density function (PDF) of gas temperature at fixed density exhibits two clear modes: a warm and a cold temperature mode, corresponding to the gas inside and outside of ionized bubbles. We find that the transition between the two modes is ‘universal’ in the sense that its timing is accurately parametrized by the value of the volume-weighted neutral fraction for any reionization history. This ‘universality’ is more complex than just a reflection of the fact that ionized gas is warm and neutral gas is cold: it holds for the transition at a fixed value of gas density, and gas at different densities transitions from the cold to the warm mode at different values of the neutral fraction, reflecting a non-trivial relationship between the ionization history and the evolving gas density PDF. Furthermore, the ‘emergence’ of the tight temperature–density relation in the warm mode is also approximately ‘universally’ controlled by the volume-weighted neutral fraction for any reionization history. In particular, the ‘emergence’ of the temperature–density relation (as quantified by the rapid decrease in its width) occurs when the neutral fraction is 10−4 ≲ XH i ≲ 10−3 for any reionization history. Our results indicate that the neutral fraction is a primary quantity controlling the various properties of the temperature–density relation, regardless of reionization history. 
    more » « less