Abstract We first provide a stochastic formula for the Carathéodory distance in terms of general Markovian couplings and prove a comparison result between the Carathéodory distance and the complete Kähler metric with a negative lower curvature bound using the Kendall–Cranston coupling. This probabilistic approach gives a version of the Schwarz lemma on complete noncompact Kähler manifolds with a further decomposition Ricci curvature into the orthogonal Ricci curvature and the holomorphic sectional curvature, which cannot be obtained by using Yau–Royden's Schwarz lemma. We also prove coupling estimates on quaternionic Kähler manifolds. As a by‐product, we obtain an improved gradient estimate of positive harmonic functions on Kähler manifolds and quaternionic Kähler manifolds under lower curvature bounds.
more »
« less
A Toponogov globalisation result for Lorentzian length spaces
Abstract In the synthetic geometric setting introduced by Kunzinger and Sämann, we present an analogue of Toponogov’s Globalisation Theorem which applies to Lorentzian length spaces with lower (timelike) curvature bounds. Our approach utilises a “cat’s cradle” construction akin to that which appears in several proofs in the metric setting. On the road to our main result, we also provide a lemma regarding the subdivision of triangles in spaces with a local lower curvature bound and a synthetic Lorentzian version of the Lebesgue Number Lemma. Several properties of time functions and the null distance on globally hyperbolic Lorentzian length spaces are also highlighted. We conclude by presenting several applications of our results, including versions of the Bonnet–Myers Theorem and the Splitting Theorem for Lorentzian length spaces with local lower curvature bounds, as well as discussion of stability of curvature bounds under Gromov–Hausdorff convergence.
more »
« less
- Award ID(s):
- 1928930
- PAR ID:
- 10588606
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Mathematische Annalen
- Volume:
- 392
- Issue:
- 3
- ISSN:
- 0025-5831
- Format(s):
- Medium: X Size: p. 3447-3478
- Size(s):
- p. 3447-3478
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We study the volume growth of metric balls as a function of the radius in discrete spaces and focus on the relationship between volume growth and discrete curvature. We improve volume growth bounds under a lower bound on the so-called Ollivier curvature and discuss similar results under other types of discrete Ricci curvature. Following recent work in the continuous setting of Riemannian manifolds (by the 1st author), we then bound the eigenvalues of the Laplacian of a graph under bounds on the volume growth. In particular, $$\lambda _2$$ of the graph can be bounded using a weighted discrete Hardy inequality and the higher eigenvalues of the graph can be bounded by the eigenvalues of a tridiagonal matrix times a multiplicative factor, both of which only depend on the volume growth of the graph. As a direct application, we relate the eigenvalues to the Cheeger isoperimetric constant. Using these methods, we describe classes of graphs for which the Cheeger inequality is tight on the 2nd eigenvalue (i.e. the 1st nonzero eigenvalue). We also describe a method for proving Buser’s Inequality in graphs, particularly under a lower bound assumption on curvature.more » « less
-
In this paper we study sectional curvature bounds for Riemannian manifolds with density from the perspective of a weighted torsion-free connection introduced recently by the last two authors. We develop two new tools for studying weighted sectional curvature bounds: a new weighted Rauch comparison theorem and a modified notion of convexity for distance functions. As applications we prove generalizations of theorems of Preissman and Byers for negative curvature, the (homeomorphic) quarter-pinched sphere theorem, and Cheeger’s finiteness theorem. We also improve results of the first two authors for spaces of positive weighted sectional curvature and symmetry.more » « less
-
Green used an arithmetic analogue of Szemerédi's celebrated regularity lemma to prove the following strengthening of Roth's theorem in vector spaces. For every α>0, β<α3, and prime number p, there is a least positive integer n_p(α,β) such that if n≥n_p(α,β), then for every subset of 𝔽np of density at least α there is a nonzero d for which the density of three-term arithmetic progressions with common difference d is at least β. We determine for p≥19 the tower height of n_p(α,β) up to an absolute constant factor and an additive term depending only on p. In particular, if we want half the random bound (so β=α^{3}/2), then the dimension n required is a tower of twos of height Θ((log p)loglog(1/α)). It turns out that the tower height in general takes on a different form in several different regions of α and β, and different arguments are used both in the upper and lower bounds to handle these cases.more » « less
-
Abstract Generalized torical band inequalities give precise upper bounds for the width of compact manifolds with boundary in terms of positive pointwise lower bounds for scalar curvature, assuming certain topological conditions. We extend several incarnations of these results in which pointwise scalar curvature bounds are replaced with spectral scalar curvature bounds. More precisely, we prove upper bounds for the width in terms of the principal eigenvalue of the operator $$-\Delta +cR$$, where $$R$$ denotes scalar curvature and $c>0$ is a constant. Three separate strategies are employed to obtain distinct results holding in different dimensions and under varying hypotheses, namely we utilize spacetime harmonic functions, $$\mu $$-bubbles, and spinorial Callias operators. In dimension 3, where the strongest result is produced, we are also able to treat open and incomplete manifolds, and establish the appropriate rigidity statements. Additionally, a version of such spectral torus band inequalities is given where tori are replaced with cubes. Finally, as a corollary, we generalize the classical work of Schoen and Yau, on the existence of black holes due to concentration of matter, to higher dimensions and with alternate measurements of size.more » « less
An official website of the United States government
