Abstract We construct and analyse finite element approximations of the Einstein tensor in dimension $$N \ge 3$$. We focus on the setting where a smooth Riemannian metric tensor $$g$$ on a polyhedral domain $$\varOmega \subset \mathbb{R}^{N}$$ has been approximated by a piecewise polynomial metric $$g_{h}$$ on a simplicial triangulation $$\mathcal{T}$$ of $$\varOmega $$ having maximum element diameter $$h$$. We assume that $$g_{h}$$ possesses single-valued tangential–tangential components on every codimension-$$1$$ simplex in $$\mathcal{T}$$. Such a metric is not classically differentiable in general, but it turns out that one can still attribute meaning to its Einstein curvature in a distributional sense. We study the convergence of the distributional Einstein curvature of $$g_{h}$$ to the Einstein curvature of $$g$$ under refinement of the triangulation. We show that in the $$H^{-2}(\varOmega )$$-norm this convergence takes place at a rate of $$O(h^{r+1})$$ when $$g_{h}$$ is an optimal-order interpolant of $$g$$ that is piecewise polynomial of degree $$r \ge 1$$. We provide numerical evidence to support this claim. In the process of proving our convergence results we derive a few formulas for the evolution of certain geometric quantities under deformations of the metric. 
                        more » 
                        « less   
                    This content will become publicly available on November 18, 2025
                            
                            Finite element approximation of scalar curvature in arbitrary dimension
                        
                    
    
            We analyze finite element discretizations of scalar curvature in dimension $$N \ge 2$$. Our analysis focuses on piecewise polynomial interpolants of a smooth Riemannian metric $$g$$ on a simplicial triangulation of a polyhedral domain $$\Omega \subset \mathbb{R}^N$$ having maximum element diameter $$h$$. We show that if such an interpolant $$g_h$$ has polynomial degree $$r \ge 0$$ and possesses single-valued tangential-tangential components on codimension-1 simplices, then it admits a natural notion of (densitized) scalar curvature that converges in the $$H^{-2}(\Omega)$$-norm to the (densitized) scalar curvature of $$g$$ at a rate of $$O(h^{r+1})$$ as $$h \to 0$$, provided that either $N = 2$ or $$r \ge 1$$. As a special case, our result implies the convergence in $$H^{-2}(\Omega)$$ of the widely used ``angle defect'' approximation of Gaussian curvature on two-dimensional triangulations, without stringent assumptions on the interpolated metric $$g_h$$. We present numerical experiments that indicate that our analytical estimates are sharp. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10588771
- Publisher / Repository:
- American Mathematical Society
- Date Published:
- Journal Name:
- Mathematics of Computation
- ISSN:
- 0025-5718
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The classical serendipity and mixed finite element spaces suffer from poor approximation on nondegenerate, convex quadrilaterals. In this paper, we develop families of direct serendipity and direct mixed finite element spaces, which achieve optimal approximation properties and have minimal local dimension. The set of local shape functions for either the serendipity or mixed elements contains the full set of scalar or vector polynomials of degree r , respectively, defined directly on each element (i.e., not mapped from a reference element). Because there are not enough degrees of freedom for global $$H^1$$ H 1 or $$H(\text {div})$$ H ( div ) conformity, exactly two supplemental shape functions must be added to each element when $$r\ge 2$$ r ≥ 2 , and only one when $$r=1$$ r = 1 . The specific choice of supplemental functions gives rise to different families of direct elements. These new spaces are related through a de Rham complex. For index $$r\ge 1$$ r ≥ 1 , the new families of serendipity spaces $${\mathscr {DS}}_{r+1}$$ DS r + 1 are the precursors under the curl operator of our direct mixed finite element spaces, which can be constructed to have reduced or full $$H(\text {div})$$ H ( div ) approximation properties. One choice of direct serendipity supplements gives the precursor of the recently introduced Arbogast–Correa spaces (SIAM J Numer Anal 54:3332–3356, 2016. 10.1137/15M1013705 ). Other fully direct serendipity supplements can be defined without the use of mappings from reference elements, and these give rise in turn to fully direct mixed spaces. Our development is constructive, so we are able to give global bases for our spaces. Numerical results are presented to illustrate their properties.more » « less
- 
            Abstract We study the approximation of halfspaces $$h:\{0,1\}^n\to\{0,1\}$$ h : { 0 , 1 } n → { 0 , 1 } in theinfinity norm by polynomials and rational functions of any given degree.Our main result is an explicit construction of the “hardest” halfspace,for which we prove polynomial and rational approximation lower boundsthat match the trivial upper bounds achievable for all halfspaces.This completes a lengthy line of work started by Myhill and Kautz(1961). As an application, we construct a communication problem that achievesessentially the largest possible separation, of O(n) versus $$2^{-\Omega(n)}$$ 2 - Ω ( n ) ,between the sign-rank and discrepancy. Equivalently, our problem exhibitsa gap of log n versus $$\Omega(n)$$ Ω ( n ) between the communication complexitywith unbounded versus weakly unbounded error, improvingquadratically on previous constructions and completing a line of workstarted by Babai, Frankl, and Simon (FOCS 1986). Our results furthergeneralize to the k -party number-on-the-forehead model, where weobtain an explicit separation of log n versus $$\Omega(n/4^{n})$$ Ω ( n / 4 n ) for communication with unbounded versus weakly unbounded error.more » « less
- 
            Abstract This paper studies the structure and stability of boundaries in noncollapsed $${{\,\mathrm{RCD}\,}}(K,N)$$ RCD ( K , N ) spaces, that is, metric-measure spaces $$(X,{\mathsf {d}},{\mathscr {H}}^N)$$ ( X , d , H N ) with Ricci curvature bounded below. Our main structural result is that the boundary $$\partial X$$ ∂ X is homeomorphic to a manifold away from a set of codimension 2, and is $$N-1$$ N - 1 rectifiable. Along the way, we show effective measure bounds on the boundary and its tubular neighborhoods. These results are new even for Gromov–Hausdorff limits $$(M_i^N,{\mathsf {d}}_{g_i},p_i) \rightarrow (X,{\mathsf {d}},p)$$ ( M i N , d g i , p i ) → ( X , d , p ) of smooth manifolds with boundary, and require new techniques beyond those needed to prove the analogous statements for the regular set, in particular when it comes to the manifold structure of the boundary $$\partial X$$ ∂ X . The key local result is an $$\varepsilon $$ ε -regularity theorem, which tells us that if a ball $$B_{2}(p)\subset X$$ B 2 ( p ) ⊂ X is sufficiently close to a half space $$B_{2}(0)\subset {\mathbb {R}}^N_+$$ B 2 ( 0 ) ⊂ R + N in the Gromov–Hausdorff sense, then $$B_1(p)$$ B 1 ( p ) is biHölder to an open set of $${\mathbb {R}}^N_+$$ R + N . In particular, $$\partial X$$ ∂ X is itself homeomorphic to $$B_1(0^{N-1})$$ B 1 ( 0 N - 1 ) near $$B_1(p)$$ B 1 ( p ) . Further, the boundary $$\partial X$$ ∂ X is $$N-1$$ N - 1 rectifiable and the boundary measure "Equation missing" is Ahlfors regular on $$B_1(p)$$ B 1 ( p ) with volume close to the Euclidean volume. Our second collection of results involve the stability of the boundary with respect to noncollapsed mGH convergence $$X_i\rightarrow X$$ X i → X . Specifically, we show a boundary volume convergence which tells us that the $$N-1$$ N - 1 Hausdorff measures on the boundaries converge "Equation missing" to the limit Hausdorff measure on $$\partial X$$ ∂ X . We will see that a consequence of this is that if the $$X_i$$ X i are boundary free then so is X .more » « less
- 
            Abstract A fundamental problem in Ramsey theory is to determine the growth rate in terms of $$n$$ of the Ramsey number $$r(H, K_{n}^{(3)})$$ of a fixed $$3$$-uniform hypergraph $$H$$ versus the complete $$3$$-uniform hypergraph with $$n$$ vertices. We study this problem, proving two main results. First, we show that for a broad class of $$H$$, including links of odd cycles and tight cycles of length not divisible by three, $$r(H, K_{n}^{(3)}) \ge 2^{\Omega _{H}(n \log n)}$$. This significantly generalizes and simplifies an earlier construction of Fox and He which handled the case of links of odd cycles and is sharp both in this case and for all but finitely many tight cycles of length not divisible by three. Second, disproving a folklore conjecture in the area, we show that there exists a linear hypergraph $$H$$ for which $$r(H, K_{n}^{(3)})$$ is superpolynomial in $$n$$. This provides the first example of a separation between $$r(H,K_{n}^{(3)})$$ and $$r(H,K_{n,n,n}^{(3)})$$, since the latter is known to be polynomial in $$n$$ when $$H$$ is linear.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
