Given a simple graph $$G$$, the irregularity strength of $$G$$, denoted $s(G)$, is the least positive integer $$k$$ such that there is a weight assignment on edges $$f: E(G) \to \{1,2,\dots, k\}$$ for which each vertex weight $$f^V(v):= \sum_{u: \{u,v\}\in E(G)} f(\{u,v\})$$ is unique amongst all $$v\in V(G)$$. In 1987, Faudree and Lehel conjectured that there is a constant $$c$$ such that $$s(G) \leq n/d + c$$ for all $$d$$-regular graphs $$G$$ on $$n$$ vertices with $d>1$, whereas it is trivial that $$s(G) \geq n/d$$. In this short note we prove that the Faudree-Lehel Conjecture holds when $$d \geq n^{0.8+\epsilon}$$ for any fixed $$\epsilon >0$$, with a small additive constant $c=28$ for $$n$$ large enough. Furthermore, we confirm the conjecture asymptotically by proving that for any fixed $$\beta\in(0,1/4)$$ there is a constant $$C$$ such that for all $$d$$-regular graphs $$G$$, $$s(G) \leq \frac{n}{d}(1+\frac{C}{d^{\beta}})+28$$, extending and improving a recent result of Przybyło that $$s(G) \leq \frac{n}{d}(1+ \frac{1}{\ln^{\epsilon/19}n})$$ whenever $$d\in [\ln^{1+\epsilon} n, n/\ln^{\epsilon}n]$$ and $$n$$ is large enough.
more »
« less
BiLipschitz homogeneous hyperbolic nets
We answer a question of Itai Benjamini by showing there is a \(K< \infty\) so that for any \(\epsilon >0\), there exist \(\epsilon\)-dense discrete sets in the hyperbolic disk that are homogeneous with respect to \(K\)-biLipschitz maps of the disk to itself. However, this is not true for \(K\) close to \(1\); in that case, every \(K\)-biLipschitz homogeneous discrete set must omit a disk of hyperbolic radius \(\epsilon(K)>0\). For \(K=1\), this is a consequence of the Margulis lemma for discrete groups of hyperbolic isometries.
more »
« less
- Award ID(s):
- 2303987
- PAR ID:
- 10588972
- Publisher / Repository:
- Finnish Mathematical Society
- Date Published:
- Journal Name:
- Annales Fennici Mathematici
- Volume:
- 49
- Issue:
- 2
- ISSN:
- 2737-0690
- Subject(s) / Keyword(s):
- Hyperbolic geometry, biLipschitz maps, Margulis constant
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We show that a -stable set in a finite group can be approximated, up to given error , by left cosets of a subgroup of index . This improves the bound in a similar result of Terry and Wolf on stable arithmetic regularity in finite abelian groups, and leads to a quantitative account of work of the author, Pillay, and Terry on stable sets in arbitrary finite groups. We also prove an analogous result for finite stable sets of small tripling in arbitrary groups, which provides a quantitative version of recent work by Martin-Pizarro, Palacín, and Wolf. Our proofs use results on VC-dimension, and a finitization of model-theoretic techniques from stable group theory.more » « less
-
We consider the problem of designing sublinear time algorithms for estimating the cost of minimum] metric traveling salesman (TSP) tour. Specifically, given access to a n × n distance matrix D that specifies pairwise distances between n points, the goal is to estimate the TSP cost by performing only sublinear (in the size of D) queries. For the closely related problem of estimating the weight of a metric minimum spanning tree (MST), it is known that for any epsilon > 0, there exists an O^~(n/epsilon^O(1))-time algorithm that returns a (1+epsilon)-approximate estimate of the MST cost. This result immediately implies an O^~(n/epsilon^O(1)) time algorithm to estimate the TSP cost to within a (2 + epsilon) factor for any epsilon > 0. However, no o(n^2)-time algorithms are known to approximate metric TSP to a factor that is strictly better than 2. On the other hand, there were also no known barriers that rule out existence of (1 + epsilon)-approximate estimation algorithms for metric TSP with O^~ (n) time for any fixed epsilon > 0. In this paper, we make progress on both algorithms and lower bounds for estimating metric TSP cost. On the algorithmic side, we first consider the graphic TSP problem where the metric D corresponds to shortest path distances in a connected unweighted undirected graph. We show that there exists an O^~(n) time algorithm that estimates the cost of graphic TSP to within a factor of (2 − epsilon_0) for some epsilon_0 > 0. This is the first sublinear cost estimation algorithm for graphic TSP that achieves an approximation factor less than 2. We also consider another well-studied special case of metric TSP, namely, (1, 2)-TSP where all distances are either 1 or 2, and give an O^~(n ^ 1.5) time algorithm to estimate optimal cost to within a factor of 1.625. Our estimation algorithms for graphic TSP as well as for (1, 2)-TSP naturally lend themselves to O^~(n) space streaming algorithms that give an 11/6-approximation for graphic TSP and a 1.625-approximation for (1, 2)-TSP. These results motivate the natural question if analogously to metric MST, for any epsilon > 0, (1 + epsilon)-approximate estimates can be obtained for graphic TSP and (1, 2)-TSP using O^~ (n) queries. We answer this question in the negative – there exists an epsilon_0 > 0, such that any algorithm that estimates the cost of graphic TSP ((1, 2)-TSP) to within a (1 + epsilon_0)-factor, necessarily requires (n^2) queries. This lower bound result highlights a sharp separation between the metric MST and metric TSP problems. Similarly to many classical approximation algorithms for TSP, our sublinear time estimation algorithms utilize subroutines for estimating the size of a maximum matching in the underlying graph. We show that this is not merely an artifact of our approach, and that for any epsilon > 0, any algorithm that estimates the cost of graphic TSP or (1, 2)-TSP to within a (1 + epsilon)-factor, can also be used to estimate the size of a maximum matching in a bipartite graph to within an epsilon n additive error. This connection allows us to translate known lower bounds for matching size estimation in various models to similar lower bounds for metric TSP cost estimation.more » « less
-
Abstract Given a sequence $$\{Z_d\}_{d\in \mathbb{N}}$$ of smooth and compact hypersurfaces in $${\mathbb{R}}^{n-1}$$, we prove that (up to extracting subsequences) there exists a regular definable hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^n$$ such that each manifold $$Z_d$$ is diffeomorphic to a component of the zero set on $$\Gamma$$ of some polynomial of degree $$d$$. (This is in sharp contrast with the case when $$\Gamma$$ is semialgebraic, where for example the homological complexity of the zero set of a polynomial $$p$$ on $$\Gamma$$ is bounded by a polynomial in $$\deg (p)$$.) More precisely, given the above sequence of hypersurfaces, we construct a regular, compact, semianalytic hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^{n}$$ containing a subset $$D$$ homeomorphic to a disk, and a family of polynomials $$\{p_m\}_{m\in \mathbb{N}}$$ of degree $$\deg (p_m)=d_m$$ such that $$(D, Z(p_m)\cap D)\sim ({\mathbb{R}}^{n-1}, Z_{d_m}),$$ i.e. the zero set of $$p_m$$ in $$D$$ is isotopic to $$Z_{d_m}$$ in $${\mathbb{R}}^{n-1}$$. This says that, up to extracting subsequences, the intersection of $$\Gamma$$ with a hypersurface of degree $$d$$ can be as complicated as we want. We call these ‘pathological examples’. In particular, we show that for every $$0 \leq k \leq n-2$$ and every sequence of natural numbers $$a=\{a_d\}_{d\in \mathbb{N}}$$ there is a regular, compact semianalytic hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^n$$, a subsequence $$\{a_{d_m}\}_{m\in \mathbb{N}}$$ and homogeneous polynomials $$\{p_{m}\}_{m\in \mathbb{N}}$$ of degree $$\deg (p_m)=d_m$$ such that (0.1)$$\begin{equation}b_k(\Gamma\cap Z(p_m))\geq a_{d_m}.\end{equation}$$ (Here $$b_k$$ denotes the $$k$$th Betti number.) This generalizes a result of Gwoździewicz et al. [13]. On the other hand, for a given definable $$\Gamma$$ we show that the Fubini–Study measure, in the Gaussian probability space of polynomials of degree $$d$$, of the set $$\Sigma _{d_m,a, \Gamma }$$ of polynomials verifying (0.1) is positive, but there exists a constant $$c_\Gamma$$ such that $$\begin{equation*}0<{\mathbb{P}}(\Sigma_{d_m, a, \Gamma})\leq \frac{c_{\Gamma} d_m^{\frac{n-1}{2}}}{a_{d_m}}.\end{equation*}$$ This shows that the set of ‘pathological examples’ has ‘small’ measure (the faster $$a$$ grows, the smaller the measure and pathologies are therefore rare). In fact we show that given $$\Gamma$$, for most polynomials a Bézout-type bound holds for the intersection $$\Gamma \cap Z(p)$$: for every $$0\leq k\leq n-2$$ and $t>0$: $$\begin{equation*}{\mathbb{P}}\left(\{b_k(\Gamma\cap Z(p))\geq t d^{n-1} \}\right)\leq \frac{c_\Gamma}{td^{\frac{n-1}{2}}}.\end{equation*}$$more » « less
-
This is the second in a pair of works which study small disturbances to the plane, periodic 3D Couette flow in the incompressible Navier-Stokes equations at high Reynolds number Re . In this work, we show that there is constant 0 > c 0 ≪ 1 0 > c_0 \ll 1 , independent of R e \mathbf {Re} , such that sufficiently regular disturbances of size ϵ ≲ R e − 2 / 3 − δ \epsilon \lesssim \mathbf {Re}^{-2/3-\delta } for any δ > 0 \delta > 0 exist at least until t = c 0 ϵ − 1 t = c_0\epsilon ^{-1} and in general evolve to be O ( c 0 ) O(c_0) due to the lift-up effect. Further, after times t ≳ R e 1 / 3 t \gtrsim \mathbf {Re}^{1/3} , the streamwise dependence of the solution is rapidly diminished by a mixing-enhanced dissipation effect and the solution is attracted back to the class of “2.5 dimensional” streamwise-independent solutions (sometimes referred to as “streaks”). The largest of these streaks are expected to eventually undergo a secondary instability at t ≈ ϵ − 1 t \approx \epsilon ^{-1} . Hence, our work strongly suggests, for all (sufficiently regular) initial data, the genericity of the “lift-up effect ⇒ \Rightarrow streak growth ⇒ \Rightarrow streak breakdown” scenario for turbulent transition of the 3D Couette flow near the threshold of stability forwarded in the applied mathematics and physics literature.more » « less
An official website of the United States government

