skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 5, 2026

Title: Considerations for Colleges Installing Electric Vehicle Charging Stations
Electric Vehicles (EVs) are becoming more prevalent across all major world automotive markets. The growth of EVs is being powered by impressive improvements in new battery technology, along with renewable energy advances that have dramatically lowered the costs for a generation of pollution-free electricity. Colleges and universities are challenged to respond to this change, especially those with legacy automotive and transportation programs and those with clean energy technology programs. This study gathered experiences from several U.S. colleges on the leading edge of this trend. Challenges are identified for the deployment of EV charging infrastructure on campus, and recommendations are provided for those seeking to integrate EV charging technology into the curriculum and instruction of existing science, technology, engineering, and math programs.  more » « less
Award ID(s):
2201631
PAR ID:
10589067
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Zenodo
Date Published:
Journal Name:
Journal of advanced technological education
Volume:
4
Issue:
1
ISSN:
2832-9627
Subject(s) / Keyword(s):
electric vehicle charging station solar photovoltaic infrastructure STEM education
Format(s):
Medium: X
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. Electric Vehicle (EV) charging has been a significant barrier to the widespread use of EVs. Traditional EV charging methods depend on cables, and there are concerns about safety, accessibility, convenience, and weather. A recent development, dynamic (or in-motion) wireless charging, enables EVs to charge wirelessly by incorporating charging infrastructure into roadways, allowing EVs to charge while moving. However, the energy transferred relies heavily on vehicle speed and time spent in the charging lane. This paper proposes an innovative solution that combines dynamic wire-less charging with Variable Speed Limit (VSL) control. This dynamic traffic control strategy adjusts speed limits based on real-time traffic, weather, and incidents. This integration of dynamic wireless charging and VSL has two potential benefits. First, it can motivate driver compliance with VSL through the incentive of charging. Second, it can promote smoother traffic flow and improve traffic safety by implementing lower speed limits at certain times. To verify these benefits, microscopic traffic simulations in SUMO were conducted under different EV penetration rates and VSL compliance rates. Simulation results reveal that the proposed approach can enhance dynamic wireless charging system performance while improving traffic flow and safety 
    more » « less
  2. Electric vehicles (EVs) play a crucial role in achieving sustainability goals, mitigating energy crises, and reducing air pollution. However, their rapid adoption poses significant challenges to the power grid, particularly during peak charging periods, necessitating advanced load management strategies. This study introduces an artificial intelligence (AI)-integrated optimal charging framework designed to facilitate fast charging and mitigate grid stress by smoothing the “duck curve”. Data from Caltech’s Adaptive Charging Network (ACN) at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) site was collected and categorized into day and night patterns to predict charging duration based on key features, including start charging time and energy requested. The AI-driven charging strategy developed optimizes energy management, reduces peak loads, and alleviates grid strain. Additionally, the study evaluates the impact of integrating 1.5 million, 3 million, and 5 million EVs under various AI-based charging strategies, demonstrating the framework’s effectiveness in managing large-scale EV adoption. The peak power consumption reaches around 22,000 MW without EVs, 25,000 MW for 1.5 million EVs, 28,000 MW for 3 million EVs, and 35,000 MW for 5 million EVs without any charging strategy. By implementing an AI-driven optimal charging optimization strategy that considers both early charging and duck curve smoothing, the peak demand is reduced by approximately 16% for 1.5 million EVs, 21.43% for 3 million EVs, and 34.29% for 5 million EVs. 
    more » « less
  3. We develop hierarchical coordination frameworks to optimally manage active and reactive power dispatch of number of spatially distributed electric vehicles (EVs) incorporating distribution grid level constraints. The frameworks consist of detailed mathematical models, which can benefit the operation of both entities involved, i.e., the grid operations and EV charging. The first model comprises of a comprehensive optimal power flow model at the distribution grid level, while the second model represents detailed optimal EV charging with reactive power support to the grid. We demonstrate benefits of coordinated dispatch of active and reactive power from EVs using a 33-node distribution feeder with large number of EVs (more than 5,000). Case studies demonstrate that, in constrained distribution grids, coordinated charging reduces the average cost of EV charging if the charging takes place at non-unity power factor mode compared to unity power factor. Similarly, the results also demonstrate that distribution grids can accommodate charging of increased number of EVs if EV charging takes place at non-unity power factor mode compared to unity power factor. 
    more » « less
  4. Electric vehicles (EVs) promise a sustainable solution to mitigating negative emission externalities of transportation systems caused by fossil-fueled conventional vehicles (CVs). While recent developments in battery technology and charging infrastructure can help evolve the niche market of EVs into the mass market, EVs are yet to be widely adopted by the public. This calls for an in-depth understanding of public adoption behavior of EVs as one dimension of vehicle decision making, which itself may be intertwined with other vehicle decision-making dimensions, especially vehicle transaction. This study presents an integrated choice model with latent variables (ICLV) to investigate households’—as a decision-making unit—decisions on vehicle transaction type (i.e., no transaction, sell, add, and trade) and vehicle fuel type (i.e., CVs and all EV types, including hybrid EV, plug-in hybrid EV, and battery EV) choice. To analyze the ICLV model empirically, one of the first revealed preferences national vehicle survey involving CVs and all EV types was conducted, which retrospectively inquired about 1,691 American households’ dynamics of vehicle decision making and demographic attributes over a 10-year period as well as their attitudes/preferences. The model estimation results highlight that EV adoption and vehicle transaction choice is influenced mainly by (1) the dynamics of household demographic attributes and (2) four latent constructs explaining attentiveness to vehicle attributes, social influence, environmental consciousness, and technology savviness. Notably, EV adoption promotion policies are found to be likely most effective on socially influenced individuals, who tend to consider advertisement and social trend more when making vehicle decisions. 
    more » « less
  5. The number of electric vehicles (EV) has increased significantly in the past decades due to its advantages including emission reduction and improved energy efficiency. However, the adoption of EV could lead to overloading the grid and degrading the power quality of the distribution system. It also demands an increase in the number of EV charging stations. To meet the charging needs of 15 million EVs by the year 2030 with limited charging stations, prediction of charging needs, and reallocating charging resources are in emerging needs. In this study, long short-term memory (LSTM) and autoregressive and moving average models (ARMA) models were applied to predict charging loads with temporal profiles from 3 charging stations. Prediction accuracy was applied to evaluate the performance of the models. The LSTM models demonstrated a significant performance improvement compared to ARMA models. The results from this study lay a foundation to efficiently manage charge resources. 
    more » « less