Abstract We study the ringdown signal of black holes formed in prompt-collapse binary neutron star mergers. We analyze data from 47 numerical relativity simulations. We show that the and multipoles of the gravitational wave signal are well fitted by decaying damped exponentials, as predicted by black-hole perturbation theory. We show that the ratio of the amplitude in the two modes depends on the progenitor binary mass ratioqand reduced tidal parameter . Unfortunately, the numerical uncertainty in our data is too large to fully quantify this dependency. If confirmed, these results will enable novel tests of general relativity in the presence of matter with next-generation gravitational-wave observatories.
more »
« less
This content will become publicly available on March 17, 2026
Automated determination of the end time of junk radiation in binary black hole simulations
Abstract When numerically solving Einstein’s equations for the evolution of binary black holes, physical imperfections in the initial data manifest as a transient, high-frequency pulse of ‘junk radiation.’ This unphysical signal must be removed before the waveform can be used. Improvements in the efficiency of numerical simulations now allow waveform catalogs containing thousands of waveforms to be produced. Thus, an automated procedure for identifying junk radiation is required. To this end, we present a new algorithm based on the empirical mode decomposition (EMD) from the Hilbert–Huang transform. This approach allows us to isolate and measure the high-frequency oscillations present in the measured irreducible masses of the black holes. The decay of these oscillations allows us to estimate the time from which the junk radiation can be ignored. To make this procedure more precise, we propose three distinct threshold criteria that specify how small the contribution of junk radiation has to be before it can be considered negligible. We apply this algorithm to 3403 BBH simulations from the Simulating eXtreme Spacetime catalog to find appropriate values for the thresholds in the three criteria. We find that this approach yields reliable decay time estimates, i.e. when to consider the simulation physical, for 98.5% of the simulations studied. This demonstrates the efficacy of the EMD as a suitable tool to automatically isolate and characterize junk radiation in the simulation of binary black hole systems.
more »
« less
- PAR ID:
- 10589158
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- Classical and Quantum Gravity
- Volume:
- 42
- Issue:
- 7
- ISSN:
- 0264-9381
- Page Range / eLocation ID:
- 075004
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Gravitational wave searches are crucial for studying compact sources such as neutron stars and black holes. Many sensitive modeled searches use matched filtering to compare gravitational strain data to a set of waveform models known as template banks. We introduce a new stochastic placement method for constructing template banks, offering efficiency and flexibility to handle arbitrary parameter spaces, including orbital eccentricity, tidal deformability, and other extrinsic parameters. This method can be computationally limited by the ability to compare proposal templates with the accepted templates in the bank. To alleviate this computational load, we introduce the use of inner product inequalities to reduce the number of required comparisons. We also introduce a novel application of Gaussian Kernel Density Estimation to enhance waveform coverage in sparser regions. Our approach has been employed to search for eccentric binary neutron stars, low-mass neutron stars, primordial black holes, and supermassive black hole binaries. We demonstrate that our method produces self-consistent banks that recover the required minimum fraction of signals. For common parameter spaces, our method shows comparable computational performance and similar template bank sizes to geometric placement methods and stochastic methods, while easily extending to higher-dimensional problems. The time to run a search exceeds the time to generate the bank by a factor of for dedicated template banks, such as geometric, mass-only stochastic, and aligned spin cases, for eccentric and for the tidal deformable bank. With the advent of efficient template bank generation, the primary area for improvement is developing more efficient search methodologies.more » « less
-
Abstract We study the interior of black holes in the presence of charged scalar hair of small amplitude$$\epsilon $$ on the event horizon and show their terminal boundary is a crushing Kasner-like singularity. These spacetimes are spherically symmetric, spatially homogeneous and they differ significantly from the hairy black holes with uncharged matter previously studied in[M. Van de Moortel, Violent nonlinear collapse inside charged hairy black holes, Arch. Rational. Mech. Anal., 248, 89, 2024]in that the electric field is dynamical and subject to the backreaction of charged matter. We prove this charged backreaction causes drastically different dynamics compared to the uncharged case that ultimately impact the formation of the spacelike singularity, exhibiting novel phenomena such asCollapsed oscillations: oscillatory growth of the scalar hair, nonlinearly induced by the collapseAfluctuating collapse: The final Kasner exponents’ dependency in$$\epsilon $$ is via an expression of the form$$|\sin \left( \omega _0 \cdot \epsilon ^{-2}+ O(\log (\epsilon ^{-1}))\right) |$$ .AKasner bounce: a transition from an unstable Kasner metric to a different stable Kasner metricThe Kasner bounce occurring in our spacetime is reminiscent of the celebrated BKL scenario in cosmology. We additionally propose a construction indicating the relevance of the above phenomena – including Kasner bounces – to spacelike singularities inside more general (asymptotically flat) black holes, beyond the hairy case. While our result applies to all values of$$\Lambda \in \mathbb {R}$$ , in the$$\Lambda <0$$ case, our spacetime corresponds to the interior region of a charged asymptotically Anti-de-Sitter stationary black hole, also known as aholographic superconductorin high-energy physics, and whose exterior region was rigorously constructed in the recent mathematical work [W. Zheng,Asymptotically Anti-de Sitter Spherically Symmetric Hairy Black Holes, arXiv.2410.04758].more » « less
-
Abstract When modeling the population of merging binary black holes, analyses have generally focused on characterizing the distribution of primary (i.e., more massive) black holes in the binary, while using simplistic prescriptions for the distribution of secondary masses. However, the secondary mass distribution and its relationship to the primary mass distribution provide a fundamental observational constraint on the formation history of coalescing binary black holes. If both black holes experience similar stellar evolutionary processes prior to collapse, as might be expected in dynamical formation channels, the primary and secondary mass distributions would show similar features. If they follow distinct evolutionary pathways (for example, due to binary interactions that break symmetry between the initially more massive and less massive stars), their mass distributions may differ. We present the first analysis of the binary black hole population that explicitly fits for the secondary mass distribution. We find that the data is consistent with a ∼30M⊙peak existing only in the distribution of secondary rather than primary masses. This would have major implications for our understanding of the formation of these binaries. Alternatively, the data is consistent with the peak existing in both component mass distributions, a possibility not included in most previous studies. In either case, the peak is observed at , which is shifted lower than the value obtained in previous analyses of the marginal primary mass distribution, placing this feature in further tension with expectations from a pulsational pair-instability supernova pileup.more » « less
-
Abstract We report a gravitational-wave parameter estimation algorithm,AMPLFI, based on likelihood-free inference using normalizing flows. The focus ofAMPLFIis to perform real-time parameter estimation for candidates detected by machine-learning based compact binary coalescence search,Aframe. We present details of our algorithm and optimizations done related to data-loading and pre-processing on accelerated hardware. We train our model using binary black-hole (BBH) simulations on real LIGO-Virgo detector noise. Our model has million trainable parameters with training times h. Based on online deployment on a mock data stream of LIGO-Virgo data,Aframe+AMPLFIis able to pick up BBH candidates and infer parameters for real-time alerts from data acquisition with a net latency of s.more » « less