Abstract Introduction: We present an extensive theoretical investigation of the electron impact excitation of doubly-ionized titanium (Ti III) to meet the needs of spectral analysis and plasma modeling. OBJECTIVES: The main objective of this work is to extend the currently scarce database of both structure and collision data for Ti III. METHODS: The calculation was performed in the close-coupling approximation using theB-splineR-matrix method. The multi-configuration Hartree–Fock method in combination withB-spline configuration interaction expansions and the non-orthogonal orbitals technique is employed for accurate descriptions of the target wave functions and adequate accounts of the various interactions between the target states. Relativistic effects are treated at the semi-relativistic Breit-Pauli approximation level. RESULTS: The present close-coupling expansion includes 138 fine-structure levels of Ti III belonging to the , , , ( ), ( ), , and configurations. Comprehensive sets of radiative and electron collisional data are reported for all of the possible transitions between the 138 fine-structure levels. Thermally averaged collision strengths are determined using a Maxwellian distribution for a wide range of temperatures from K to K. The accuracy of the calculated radiative parameters is validated by comparing with available values from the NIST database and previous literature. CONCLUSION: Given the lack of sufficient currently available experimental and theoretical data, the electron impact excitation cross sections of the Ti III fine-structure levels presented here are systematic, extensive, and internally consistent, thus making them suitable for many modeling applications.
more »
« less
This content will become publicly available on February 11, 2026
Einstein–Klein–Gordon system via Cauchy-characteristic evolution: computation of memory and ringdown tail
Abstract Cauchy-characteristic evolution (CCE) is a powerful method for accurately extracting gravitational waves at future null infinity. In this work, we extend the previously implemented CCE system within the numerical relativity code SpECTRE by incorporating a scalar field. This allows the system to capture features of beyond-general-relativity theories. We derive scalar contributions to the equations of motion, Weyl scalar computations, Bianchi identities, and balance laws at future null infinity. Our algorithm, tested across various scenarios, accurately reveals memory effects induced by both scalar and tensor fields and captures Price’s power-law tail ( ) in scalar fields at future null infinity, in contrast to the tail at future timelike infinity.
more »
« less
- PAR ID:
- 10589185
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- Classical and Quantum Gravity
- Volume:
- 42
- Issue:
- 5
- ISSN:
- 0264-9381
- Page Range / eLocation ID:
- 055006
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Polyatomic molecules have been identified as sensitive probes of charge-parity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both laser-coolable and have parity doublets in the ground electronic state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding the state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of YbOH using high-resolution optical spectroscopy on the nominally forbidden transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of the state, and accurately model the state’s structure with an effective Hamiltonian using best-fit parameters. Additionally, we perform Stark and Zeeman spectroscopy on the state and fit the molecule-frame dipole moment to Dand the effective electrong-factor to . Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excited state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules.more » « less
-
Abstract A test of lepton flavor universality in and decays, as well as a measurement of differential and integrated branching fractions of a nonresonant decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions to is determined from the measured double ratio of these decays to the respective branching fractions of the with and decays, which allow for significant cancellation of systematic uncertainties. The ratio is measured in the range , whereqis the invariant mass of the lepton pair, and is found to be , in agreement with the standard model expectation . This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the sameq2range, , is consistent with the present world-average value and has a comparable precision.more » « less
-
Abstract Analytic continuation from (3, 1) signature Minkowski to (2, 2) signature Klein space has emerged as a useful tool for the understanding of scattering amplitudes and flat space holography. Under this continuation, past and future null infinity merge into a single boundary ( ) which is the product of a null line with a (1, 1) signature torus. The Minkowskian -matrix continues to a Kleinian -vector which in turn may be represented by a Poincaré-invariant vacuum state in the Hilbert space built on . contains all information about in a novel, repackaged form. We give an explicit construction of in a Lorentz/conformal basis for a free massless scalar. separates into two halves which are the asymptotic null boundaries of the regions timelike and spacelike separated from the origin. is shown to be a maximally entangled state in the product of the Hilbert spaces.more » « less
-
Abstract An unusual class of equal massp-wave universal trimers with symmetry is identified, for both a two-component fermionic trimer withs- andp-wave scattering length close to unitarity and for a one-component fermionic trimer atp-wave unitarity. Moreover, fermionic trimers made of atoms with two internal spin components are found for , when thep-wave interaction between spin-up and spin-down fermions is close to unitarity and/or when the interaction between two spin-up fermions is close to thep-wave unitary limit. The universality of thesep-wave universal trimers is tested here by considering van der Waals interactions in a Lennard–Jones potential with different numbers of two-body bound states; our calculations also determine the value of the scattering volume or length where the trimer state hits zero energy and can be observed as a recombination resonance. The faux-Efimov effect appears with trimer symmetry when the two fermion interactions are close top-wave unitarity and the lowest coefficient gets modified, thereby altering the usual Wigner threshold law for inelastic processes involving three-body continuum channels.more » « less
An official website of the United States government
