Abstract Introduction: We present an extensive theoretical investigation of the electron impact excitation of doubly-ionized titanium (Ti III) to meet the needs of spectral analysis and plasma modeling. OBJECTIVES: The main objective of this work is to extend the currently scarce database of both structure and collision data for Ti III. METHODS: The calculation was performed in the close-coupling approximation using theB-splineR-matrix method. The multi-configuration Hartree–Fock method in combination withB-spline configuration interaction expansions and the non-orthogonal orbitals technique is employed for accurate descriptions of the target wave functions and adequate accounts of the various interactions between the target states. Relativistic effects are treated at the semi-relativistic Breit-Pauli approximation level. RESULTS: The present close-coupling expansion includes 138 fine-structure levels of Ti III belonging to the , , , ( ), ( ), , and configurations. Comprehensive sets of radiative and electron collisional data are reported for all of the possible transitions between the 138 fine-structure levels. Thermally averaged collision strengths are determined using a Maxwellian distribution for a wide range of temperatures from K to K. The accuracy of the calculated radiative parameters is validated by comparing with available values from the NIST database and previous literature. CONCLUSION: Given the lack of sufficient currently available experimental and theoretical data, the electron impact excitation cross sections of the Ti III fine-structure levels presented here are systematic, extensive, and internally consistent, thus making them suitable for many modeling applications.
more »
« less
This content will become publicly available on February 11, 2026
Einstein–Klein–Gordon system via Cauchy-characteristic evolution: computation of memory and ringdown tail
Abstract Cauchy-characteristic evolution (CCE) is a powerful method for accurately extracting gravitational waves at future null infinity. In this work, we extend the previously implemented CCE system within the numerical relativity code SpECTRE by incorporating a scalar field. This allows the system to capture features of beyond-general-relativity theories. We derive scalar contributions to the equations of motion, Weyl scalar computations, Bianchi identities, and balance laws at future null infinity. Our algorithm, tested across various scenarios, accurately reveals memory effects induced by both scalar and tensor fields and captures Price’s power-law tail ( ) in scalar fields at future null infinity, in contrast to the tail at future timelike infinity.
more »
« less
- PAR ID:
- 10589185
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- Classical and Quantum Gravity
- Volume:
- 42
- Issue:
- 5
- ISSN:
- 0264-9381
- Page Range / eLocation ID:
- 055006
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Polyatomic molecules have been identified as sensitive probes of charge-parity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both laser-coolable and have parity doublets in the ground electronic state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding the state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of YbOH using high-resolution optical spectroscopy on the nominally forbidden transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of the state, and accurately model the state’s structure with an effective Hamiltonian using best-fit parameters. Additionally, we perform Stark and Zeeman spectroscopy on the state and fit the molecule-frame dipole moment to Dand the effective electrong-factor to . Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excited state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules.more » « less
-
Abstract A test of lepton flavor universality in and decays, as well as a measurement of differential and integrated branching fractions of a nonresonant decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions to is determined from the measured double ratio of these decays to the respective branching fractions of the with and decays, which allow for significant cancellation of systematic uncertainties. The ratio is measured in the range , whereqis the invariant mass of the lepton pair, and is found to be , in agreement with the standard model expectation . This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the sameq2range, , is consistent with the present world-average value and has a comparable precision.more » « less
-
Abstract This paper presents a numerical investigation into the aerodynamic characteristics and fluid dynamics of a flying snake-like model employing vertical bending locomotion during aerial undulation in steady gliding. In addition to its typical horizontal undulation, the modeled kinematics incorporates vertical undulations and dorsal-to-ventral bending movements while in motion. Using a computational approach with an incompressible flow solver based on the immersed-boundary method, this study employs topological local mesh refinement mesh blocks to ensure the high resolution of the grid around the moving body. Initially, we applied a vertical wave undulation to a snake model undulating horizontally, investigating the effects of vertical wave amplitudes ( ). The vortex dynamics analysis unveiled alterations in leading-edge vortices formation within the midplane due to changes in the effective angle of attack resulting from vertical bending, directly influencing lift generation. Our findings highlighted peak lift production at and the highest lift-to-drag ratio (L/D) at , with aerodynamic performance declining beyond this threshold. Subsequently, we studied the effects of the dorsal–ventral bending amplitude ( ), showing that the tail-up/down body posture can result in different fore-aft body interactions. Compared to the baseline configuration, the lift generation is observed to increase by 17.3% at = 5°, while a preferable L/D is found at = −5°. This study explains the flow dynamics associated with vertical bending and uncovers fundamental mechanisms governing body–body interaction, contributing to the enhancement of lift production and efficiency of aerial undulation in snake-inspired gliding.more » « less
-
Abstract We investigate the stellar mass–black hole mass ( ) relation with type 1 active galactic nuclei (AGNs) down to , corresponding to a ≃ −21 absolute magnitude in rest-frame ultraviolet, atz= 2–2.5. Exploiting the deep and large-area spectroscopic survey of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX), we identify 66 type 1 AGNs with ranging from 107–1010M⊙that are measured with single-epoch virial method using Civemission lines detected in the HETDEX spectra. of the host galaxies are estimated from optical to near-infrared photometric data taken with Spitzer, the Wide-field Infrared Survey Explorer, and ground-based 4–8 m class telescopes byCIGALEspectral energy distribution (SED) fitting. We further assess the validity of SED fitting in two cases by host-nuclear decomposition performed through surface brightness profile fitting on spatially resolved host galaxies with the James Webb Space Telescope/NIRCam CEERS data. We obtain the relation covering the unexplored low-mass ranges of , and conduct forward modeling to fully account for the selection biases and observational uncertainties. The intrinsic relation atz∼ 2 has a moderate positive offset of 0.52 ± 0.14 dex from the local relation, suggestive of more efficient black hole growth at higher redshift even in the low-mass regime of . Our relation is inconsistent with the suppression at the low- regime predicted by recent hydrodynamic simulations at a 98% confidence level, suggesting that feedback in the low-mass systems may be weaker than those produced in hydrodynamic simulations.more » « less