Understanding the fundamental mechanisms that underlie the synthesis of fullerene molecules in the interstellar medium (ISM) and in the environments of astrophysical objects is an open question. In this regard, using classical molecular dynamics, we demonstrate the possibility of in situ formation of fullerene molecules, such as C 60 from graphite, which is known to occur in the ISM, in particular, circumstellar environments. Specifically, when graphite is subjected to thermal and mechanical stimuli that are typical of circumstellar shells, we find that the graphite sheet edges undergo significant restructuring and curling, leading to edge-induced interlayer-interactions and formation of mechanically strained five-membered-ring structural units. These units serve as precursors for the formation of fullerene structures, such as pristine and metastable C 60 molecules. The pathways leading to molecular C 60 formation consist of a series of steps that involve bond-breakage and subsequent local rearrangement of atoms, with the activation energy barriers of the rate-limiting step(s) being comparable to the energetics of Stone–Wales rearrangement reactions. The identified chemical pathways provide fundamental insights into the mechanisms that underlie C 60 formation. Moreover, they clearly demonstrate that top-down synthesis of C 60 from graphitic sources is a viable synthesis route at conditions pertaining to circumstellar matter. 
                        more » 
                        « less   
                    
                            
                            Pre-Biotic Astrochemistry from Astronomical Observations and Laboratory Spectroscopy
                        
                    
    
            The discovery of over 200 gas-phase chemical compounds in interstellar space has led to the speculation that this non-terrestrial synthesis may play a role in the origin of life. These identifications were possible because of laboratory spectroscopy, which provides the molecular “fingerprints” for astronomical observations. Interstellar chemistry produces a wide range of small, organic molecules in dense clouds, such as NH2COCH3, CH3OCH3, CH3COOCH3, and CH2(OH)CHO. Carbon is also carried in fullerenes C60 and C70, which can preserve C-C bonds from circumstellar environments for future synthesis. Elusive phosphorus is now found in molecular clouds, the sites of star formation, in the molecules PO and PN. Such clouds can collapse into solar systems, although the chemical/physical processing of the emerging planetary disk is uncertain. The presence of molecule-rich interstellar starting material, as well as the link to planetary bodies such as meteorites and comets, suggests astrochemical processes set a prebiotic foundation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2307305
- PAR ID:
- 10589203
- Publisher / Repository:
- Annual Reviews
- Date Published:
- Journal Name:
- Annual review of physical chemistry
- Volume:
- 75
- ISSN:
- 1545-1593
- Page Range / eLocation ID:
- 307-327
- Subject(s) / Keyword(s):
- Astrobiology Astrochemistry Interstellar Molecules radio observations millimeter spectroscopy
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The observation and synthesis of organic molecules in interstellar space is one of the most exciting and rapidly growing topics in astrochemistry. Spectroscopic observations especially with millimeter and submillimeter waves have resulted in the detection of more than 250 molecules in the interstellar clouds from which stars and planets are ultimately formed. In this review, we focus on the diverse suggestions made to explain the formation of Complex Organic Molecules (COMs) in the low-temperature interstellar medium. The dominant mechanisms at such low temperatures are still a matter of dispute, with both gas-phase and granular processes, occurring on and in ice mantles, thought to play a role. Granular mechanisms include both diffusive and nondiffusive processes. A granular explanation is strengthened by experiments at 10 K that indicate that the synthesis of large molecules on granular ice mantles under space-like conditions is exceedingly efficient, with and without external radiation. In addition, the bombardment of carbon-containing ice mantles in the laboratory by cosmic rays, which are mainly high-energy protons, can lead to organic species even at low temperatures. For processes on dust grains to be competitive at low temperatures, however, non-thermal desorption mechanisms must be invoked to explain why the organic molecules are detected in the gas phase. Although much remains to be learned, a better understanding of low-temperature organic syntheses in space will add both to our understanding of unusual chemical processes and the role of molecules in stellar evolution.more » « less
- 
            Silicon monoxide (SiO) is classified as a key precursor and fundamental molecular building block to interstellar silicate nanoparticles, which play an essential role in the synthesis of molecular building blocks connected to the Origins of Life. In the cold interstellar medium, silicon monoxide is of critical importance in initiating a series of elementary chemical reactions leading to larger silicon oxides and eventually to silicates. To date, the fundamental formation mechanisms and chemical dynamics leading to gas phase silicon monoxide have remained largely elusive. Here, through a concerted effort between crossed molecular beam experiments and electronic structure calculations, it is revealed that instead of forming highly-stable silicon dioxide (SiO 2 ), silicon monoxide can be formed via a barrierless, exoergic, single-collision event between ground state molecular oxygen and atomic silicon involving non-adiabatic reaction dynamics through various intersystem crossings. Our research affords persuasive evidence for a likely source of highly rovibrationally excited silicon monoxide in cold molecular clouds thus initiating the complex chain of exoergic reactions leading ultimately to a population of silicates at low temperatures in our Galaxy.more » « less
- 
            null (Ed.)Complex organosulfur molecules are ubiquitous in interstellar molecular clouds, but their fundamental formation mechanisms have remained largely elusive. These processes are of critical importance in initiating a series of elementary chemical reactions, leading eventually to organosulfur molecules—among them potential precursors to iron-sulfide grains and to astrobiologically important molecules, such as the amino acid cysteine. Here, we reveal through laboratory experiments, electronic-structure theory, quasi-classical trajectory studies, and astrochemical modeling that the organosulfur chemistry can be initiated in star-forming regions via the elementary gas-phase reaction of methylidyne radicals with hydrogen sulfide, leading to thioformaldehyde (H 2 CS) and its thiohydroxycarbene isomer (HCSH). The facile route to two of the simplest organosulfur molecules via a single-collision event affords persuasive evidence for a likely source of organosulfur molecules in star-forming regions. These fundamental reaction mechanisms are valuable to facilitate an understanding of the origin and evolution of the molecular universe and, in particular, of sulfur in our Galaxy.more » « less
- 
            For more than half a century, pericyclic reactions have played an important role in advancing our fundamental understanding of cycloadditions, sigmatropic shifts, group transfer reactions, and electrocyclization reactions. However, the fundamental mechanisms of photochemically activated cheletropic reactions have remained contentious. Here we report on the simplest cheletropic reaction: the [2+1] addition of ground state 18 O-carbon monoxide (C 18 O, X 1 Σ + ) to D2-acetylene (C 2 D 2 ) photochemically excited to the first excited triplet (T1), second excited triplet (T2), and first excited singlet state (S1) at 5 K, leading to the formation of D2- 18 O-cyclopropenone (c-C 3 D 2 18 O). Supported by quantum-chemical calculations, our investigation provides persuasive testimony on stepwise cheletropic reaction pathways to cyclopropenone via excited state dynamics involving the T2 (non-adiabatic) and S1 state (adiabatic) of acetylene at 5 K, while the T1 state energetically favors an intermediate structure that directly dissociates after relaxing to the ground state. The agreement between experiments in low temperature ices and the excited state calculations signifies how photolysis experiments coupled with theoretical calculations can untangle polyatomic reactions with relevance to fundamental physical organic chemistry at the molecular level, thus affording a versatile strategy to unravel exotic non-equilibrium chemistries in cyclic, aromatic organics. Distinct from traditional radical–radical pathways leading to organic molecules on ice-coated interstellar nanoparticles (interstellar grains) in cold molecular clouds and star-forming regions, the photolytic formation of cyclopropenone as presented changes the perception of how we explain the formation of complex organics in the interstellar medium eventually leading to the molecular precursors of biorelevant molecules.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    