Abstract Metal–organic framework nanoparticles (MOF NPs) have emerged as an important class of materials that display significantly enhanced performance in many applications compared to bulk MOF materials; their synthesis, however, commonly involves a tedious sequence that controls particle size and surface properties in separate steps. Now, a simple strategy to access functional MOF NPs in one pot is reported that uses a polyMOF ligand possessing a polymer block for surface functionalization and a coordination block with tunable multivalency for size control. This strategy produces uniform polyMOF‐5 NPs with sizes down to 20 nm, displaying exceptional structural and colloidal stability upon exposure to ambient conditions. A detailed time‐dependent study revealed that the polyMOF NPs were formed following an aggregation‐confined crystallization mechanism. Generality was demonstrated through the synthesis of well‐defined polyUiO‐66 NPs.
more »
« less
Determination of the dehydration pathway in a flexible metal–organic framework by dynamic in situ x-ray diffraction
Understanding guest exchange processes in metal–organic frameworks is an important step toward the rational design of functional materials with tailor-made properties. The dehydration of the flexible metal-organic framework [Co(AIP)(bpy)0.5(H2O)]•2H2O was studied by novel in situ dynamic x-ray diffraction techniques. The complex mechanism of dehydration, along with the as-yet unreported metastable structures, was determined. The structural information obtained by the application of these techniques helps to elucidate the important guest–host interactions involved in shaping the structural landscape of the framework lattice and to highlight the importance of utilizing this technique in the characterization of functional framework materials.
more »
« less
- Award ID(s):
- 1834750
- PAR ID:
- 10589328
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Structural Dynamics
- Volume:
- 7
- Issue:
- 3
- ISSN:
- 2329-7778
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Organic metal halide hybrids (OMHHs) have attracted great research attention owing to their exceptional structure and property tunability. Using appropriate organic and inorganic metal halide components, OMHHs with controlled dimensionalities at the molecular level, from 3D to 2D, 1D, and 0D structures, can be obtained. In 0D OMHHs, anionic metal halide polyhedrons are surrounded and completely isolated by organic cations to form single crystalline “host–guest” structures. These ionically bonded organic–inorganic hybrid systems often exhibit the intrinsic properties of individual metal halide species, for instance, highly efficient Stokes‐shifted broadband emissions. In this progress report, the recent advances in the development and study of luminescent 0D OMHHs are discussed: from synthetic structural control to fundamental understanding of the structure–property relationship and device integration.more » « less
-
Abstract Supramolecular polymer networks contain non-covalent cross-links that enable access to broadly tunable mechanical properties and stimuli-responsive behaviors; the incorporation of multiple unique non-covalent cross-links within such materials further expands their mechanical responses and functionality. To date, however, the design of such materials has been accomplished through discrete combinations of distinct interaction types in series, limiting materials design logic. Here we introduce the concept of leveraging “nested” supramolecular crosslinks, wherein two distinct types of non-covalent interactions exist in parallel, to control bulk material functions. To demonstrate this concept, we use polymer-linked Pd2L4metal–organic cage (polyMOC) gels that form hollow metal–organic cage junctions through metal–ligand coordination and can exhibit well-defined host-guest binding within their cavity. In these “nested” supramolecular network junctions, the thermodynamics of host-guest interactions within the junctions affect the metal–ligand interactions that form those junctions, ultimately translating to substantial guest-dependent changes in bulk material properties that could not be achieved in traditional supramolecular networks with multiple interactions in series.more » « less
-
Owing to their highly ordered crystalline structures and ease of introducing different electroactive meta ions and ligands, metal–organic frameworks (MOFs) have emerged as promising electrical and ion conducting materials. In this minireview, we highlighted recent advances in guest-induced electronic and ionic conductivity of MOFs, which are otherwise insulators or poor conductors. Examples of conductivity enhancement upon guest-induced framework oxidation or reduction, π-donor/acceptor stack formation, crosslinking of coordinatively unsaturated nodes, and binding of mobile Li+ and Mg2+ with the MOFs are discussed.more » « less
-
Abstract Zero‐dimensional (0D) organic metal halide hybrids, in which organic and metal halide ions cocrystallize to form neutral species, are a promising platform for the development of multifunctional crystalline materials. Herein we report the design, synthesis, and characterization of a ternary 0D organic metal halide hybrid, (HMTA)4PbMn0.69Sn0.31Br8, in which the organic cationN‐benzylhexamethylenetetrammonium (HMTA+, C13H19N4+) cocrystallizes with PbBr42−, MnBr42−, and SnBr42−. The wide band gap of the organic cation and distinct optical characteristics of the three metal bromide anions enabled the single‐crystalline “host–guest” system to exhibit emissions from multiple “guest” metal halide species simultaneously. The combination of these emissions led to near‐perfect white emission with a photoluminescence quantum efficiency of around 73 %. Owing to distinct excitations of the three metal halide species, warm‐ to cool‐white emissions could be generated by controlling the excitation wavelength.more » « less
An official website of the United States government
