skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 1, 2026

Title: Capped vertex functions for $${\text {Hilb}}^n(\mathbb {C}^2)$$
We obtain explicit formulas for the K-theoretic capped descendent vertex functions of $${\text {Hilb}}^n(\mathbb {C}^2)$$ for descendents given by the exterior algebra of the tautological bundle. This formula provides a one-parametric deformation of the generating function for normalized Macdonald polynomials. In particular, we show that the capped vertex functions are rational functions of the quantum parameter.  more » « less
Award ID(s):
2401380
PAR ID:
10589488
Author(s) / Creator(s):
;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Letters in Mathematical Physics
Volume:
115
Issue:
3
ISSN:
1573-0530
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The goal of this paper is to better understand the quasimap vertex functions of typeANakajima quiver varieties. To that end, we construct an explicit embedding of any typeAquiver variety into a typeAquiver variety with all framings at the rightmost vertex of the quiver. Then, we consider quasimap counts, showing that the map induced by this embedding on equivariantK-theory preserves vertex functions. 
    more » « less
  2. null (Ed.)
    This paper has two main parts. First, we consider the Tutte symmetric function XB, a generalization of the chromatic symmetric function. We introduce a vertex-weighted version of XB and show that this function admits a deletion-contraction relation. We also demonstrate that the vertex-weighted XB admits spanning-tree and spanning-forest expansions generalizing those of the Tutte polynomial by connecting XB to other graph functions. Second, we give several methods for constructing nonisomorphic graphs with equal chromatic and Tutte symmetric functions, and use them to provide specific examples. 
    more » « less
  3. The fluidity of biological tissues – whether cells can change neighbors and rearrange – is important for their function. In traditional materials, researchers have used linear response functions, such as the shear modulus, to accurately predict whether a material will behave as a fluid. Similarly, in disordered 2D vertex models for confluent biological tissues, the shear modulus becomes zero precisely when the cells can change neighbors and the tissue fluidizes, at a critical value of control parameter s 0 * = 3.81. However, the ordered ground states of 2D vertex models become linearly unstable at a lower value of control parameter (3.72), suggesting that there may be a decoupling between linear and nonlinear response. We demonstrate that the linear response does not correctly predict the nonlinear behavior in these systems: when the control parameter is between 3.72 and 3.81, cells cannot freely change neighbors even though the shear modulus is zero. These results highlight that the linear response of vertex models should not be expected to generically predict their rheology. We develop a simple geometric ansatz that correctly predicts the nonlinear response, which may serve as a framework for making nonlinear predictions in other vertex-like models. 
    more » « less
  4. Meka, Raghu (Ed.)
    Motivated by applications to monotonicity testing, Lehman and Ron (JCTA, 2001) proved the existence of a collection of vertex disjoint paths between comparable sub-level sets in the directed hypercube. The main technical contribution of this paper is a new proof method that yields a generalization of their theorem: we prove the existence of two edge-disjoint collections of vertex disjoint paths. Our main conceptual contributions are conjectures on directed hypercube flows with simultaneous vertex and edge capacities of which our generalized Lehman-Ron theorem is a special case. We show that these conjectures imply directed isoperimetric theorems, and in particular, the robust directed Talagrand inequality due to Khot, Minzer, and Safra (SIAM J. on Comp, 2018). These isoperimetric inequalities, that relate the directed surface area (of a set in the hypercube) to its distance to monotonicity, have been crucial in obtaining the best monotonicity testers for Boolean functions. We believe our conjectures pave the way towards combinatorial proofs of these directed isoperimetry theorems. 
    more » « less
  5. Abstract We construct a family of solvable lattice models whose partition functions include ‐adic Whittaker functions for general linear groups from two very different sources: from Iwahori‐fixed vectors and from metaplectic covers. Interpolating between them by Drinfeld twisting, we uncover unexpected relationships between Iwahori and metaplectic Whittaker functions. This leads to new Demazure operator recurrence relations for spherical metaplectic Whittaker functions. In prior work of the authors it was shown that the row transfer matrices of certain lattice models for spherical metaplectic Whittaker functions could be represented as ‘half‐vertex operators’ operating on the ‐Fock space of Kashiwara, Miwa and Stern. In this paper the same is shown for all the members of this more general family of lattice models including the one representing Iwahori Whittaker functions. 
    more » « less