skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Record high room temperature resistance switching in ferroelectric-gated Mott transistors unlocked by interfacial charge engineering
Abstract The superior size and power scaling potential of ferroelectric-gated Mott transistors makes them promising building blocks for developing energy-efficient memory and logic applications in the post-Moore’s Law era. The close to metallic carrier density in the Mott channel, however, imposes the bottleneck for achieving substantial field effect modulation via a solid-state gate. Previous studies have focused on optimizing the thickness, charge mobility, and carrier density of single-layer correlated channels, which have only led to moderate resistance switching at room temperature. Here, we report a record high nonvolatile resistance switching ratio of 38,440% at 300 K in a prototype Mott transistor consisting of a ferroelectric PbZr0.2Ti0.8O3gate and anRNiO3(R: rare earth)/La0.67Sr0.33MnO3composite channel. The ultrathin La0.67Sr0.33MnO3buffer layer not only tailors the carrier density profile inRNiO3through interfacial charge transfer, as corroborated by first-principles calculations, but also provides an extended screening layer that reduces the depolarization effect in the ferroelectric gate. Our study points to an effective material strategy for the functional design of complex oxide heterointerfaces that harnesses the competing roles of charge in field effect screening and ferroelectric depolarization effects.  more » « less
Award ID(s):
1710461
PAR ID:
10479229
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Exchange bias (EB), manifested as a hysteresis‐loop offset after field‐cooling, is demonstrated in perovskite‐structured ferromagnet/antiferromagnet (La0.67Sr0.33MnO3/YFeO3)nheterostructures grown on (100) SrTiO3substrates. Bilayer samples show an EB of 306 Oe at 50 K, whereas multilayers with five layers exhibit an exchange bias of up to 424 Oe at 50 K. A spin valve consisting of La0.67Sr0.33MnO3/SrTiO3/La0.67Sr0.33MnO3/YFeO3shows stable remanent configurations resulting from pinning of the upper La0.67Sr0.33MnO3layer by the YFeO3. In contrast, EB is not observed on (111)‐oriented SrTiO3substrates due to interface roughening. These results demonstrate YFeO3as an alternative orthoferrite antiferromagnet compared to BiFeO3and LaFeO3for incorporation into exchange‐biased heterostructures. 
    more » « less
  2. Abstract The Ruddlesden‐Popper 5diridate Sr2IrO4is an antiferromagnetic Mott insulator with the electronic, magnetic, and structural properties highly intertwined. Voltage control of its magnetic state is of intense fundmenatal and technological interest but remains to be demonstrated. Here, the tuning of magnetotransport properties in 5.2 nm Sr2IrO4via interfacial ferroelectric PbZr0.2Ti0.8O3is reported. The conductance of the epitaxial PbZr0.2Ti0.8O3/Sr2IrO4heterostructure exhibits ln(T) behavior that is characteristic of 2D correlated metal, in sharp contrast to the thermally activated behavior followed by 3D variable range hopping observed in single‐layer Sr2IrO4films. Switching PbZr0.2Ti0.8O3polarization induces nonvolatile, reversible resistance modulation in Sr2IrO4. At low temperatures, the in‐plane magnetoresisance in the heterostructure transitions from positive to negative at high magnetic fields, opposite to the field dependence in single‐layer Sr2IrO4. In the polarization down state, the out‐of‐plane anisotropic magnetoresistanceRAMRexhibits sinusoidal angular dependence, with a 90° phase shift below 20 K. For the polarization up state, unusual multi‐level resistance pinning appears inRAMRbelow 30 K, pointing to enhanced magnetocrystalline anisotropy. The work sheds new light on the intriguing interplay of interface lattice coupling, charge doping, magnetoelastic effect, and possible incipient ferromagnetism in Sr2IrO4, facilitating the functional design of its electronic and material properties. 
    more » « less
  3. Magnetic properties and interfacial phenomena of epitaxial perovskite oxides depend sensitively on parameters such as film thickness and strain state. In this work, epitaxial La 0.67 Sr 0.33 CoO 3 (LSCO)/La 0.67 Sr 0.33 MnO 3 (LSMO) bilayers were grown on NdGaO 3 (NGO) and LaAlO 3 (LAO) substrates with a fixed LSMO thickness of 6 nm, and LSCO thickness (t LSCO ) varying from 2 to 10 nm. Soft x-ray magnetic spectroscopy revealed that magnetically active Co 2+ ions that strongly coupled to the LSMO layer were observed below a critical t LSCO for bilayers grown on both substrates. On LAO substrates, this critical thickness was 2 nm, above which the formation of Co 2+ ions was quickly suppressed leaving only a soft LSCO layer with mixed valence Co 3+ /Co 4+ ions. The magnetic properties of both LSCO and LSMO layers displayed strong t LSCO dependence. This critical t LSCO increased to 4 nm on NGO substrates, and the magnetic properties of only the LSCO layer displayed t LSCO dependence. A non-magnetic layer characterized by Co 3+ ions and with a thickness below 2 nm exists at the LSCO/substrate interface for both substrates. The results contribute to the understanding of interfacial exchange spring behavior needed for applications in next generation spintronic and magnetic memory devices. 
    more » « less
  4. This study investigates the electrical characteristics observed in n-channel and p-channel ferroelectric field effect transistor (FeFET) devices fabricated through a similar process flow with 10 nm of ferroelectric hafnium zirconium oxide (HZO) as the gate dielectric. The n-FeFETs demonstrate a faster complete polarization switching compared to the p-channel counterparts. Detailed and systematic investigations using TCAD simulations reveal the role of fixed charges and interface traps at the HZO-interfacial layer (HZO/IL) interface in modulating the subthreshold characteristics of the devices. A characteristic crossover point observed in the transfer characteristics of n-channel devices is attributed with the temporary switching between ferroelectric-based operation to charge-based operation, caused by the pinning effect due to the presence of different traps. This experimental study helps understand the role of charge trapping effects in switching characteristics of n- and p-channel ferroelectric FETs. 
    more » « less
  5. Abstract Above‐bandgap femtosecond optical excitation of a ferroelectric/dielectric BaTiO3/CaTiO3superlattice leads to structural responses that are a consequence of the screening of the strong electrostatic coupling between the component layers. Time‐resolved X‐ray free‐electron laser diffraction shows that the structural response to optical excitation includes a net lattice expansion of the superlattice consistent with depolarization‐field screening driven by the photoexcited charge carriers. The depolarization‐field‐screening‐driven expansion is separate from a photoacoustic pulse launched from the bottom electrode on which the superlattice is epitaxially grown. The distribution of diffracted intensity of superlattice X‐ray reflections indicates that the depolarization‐field‐screening‐induced strain includes a photoinduced expansion in the ferroelectric BaTiO3and a contraction in CaTiO3. The magnitude of expansion in BaTiO3layers is larger than the contraction in CaTiO3. The difference in the magnitude of depolarization‐field‐screening‐driven strain in the BaTiO3and CaTiO3components can arise from the contribution of the oxygen octahedral rotation patterns at the BaTiO3/CaTiO3interfaces to the polarization of CaTiO3. The depolarization‐field‐screening‐driven polarization reduction in the CaTiO3layers points to a new direction for the manipulation of polarization in the component layers of a strongly coupled ferroelectric/dielectric superlattice. 
    more » « less