skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Egg translocation across a local range boundary reduces hatch rates in a trailing-edge population of a migratory songbird, Setophaga caerulescens (Black-throated Blue Warbler)
ABSTRACT The abiotic range limitation hypothesis states that species distributions are shaped by physiological constraints imposed by temperature and precipitation. To test this hypothesis, we assessed the impacts of climate on hatch rates by reciprocally translocating complete clutches of both Setophaga caerulescens (Black-throated Blue Warbler) and S. citrina (Hooded Warblers) across a local range boundary of S. caerulescens in the southern Appalachian Mountains. The S. caerulescens population occurs at the trailing edge of its breeding range, whereas the S. citrina population occurs near the core of its range. The hatching probability of S. caerulescens eggs declined from 0.93 ± 0.02 to 0.60 ± 0.07 when moved to S. citrina nests in warmer conditions. Translocation, however, had little effect on hatching probability of S. citrina eggs when moved to S. caerulescens nests in cooler environments. Thirteen reciprocal clutch translocations were performed; 17 clutches were moved as controls; and 49 nests were not manipulated. We monitored species-specific incubation behavior, measured microclimate conditions inside and outside nests using hygrochron iButtons, and examined the effects of temperature and humidity on nestling growth rates. Higher ambient temperatures had a greater effect on hatching probability than did humidity, but we were unable to determine if reduced hatching was caused by changes in temperature, humidity, or their interaction. We suggest that, in warmer conditions, S. caerulescens eggs in S. citrina nests may have been unable to cool sufficiently to avoid excessive water loss due to higher ambient temperatures but not a difference in relative humidity. Our finding that hatch rates of S. caerulescens declined when translocated to warmer conditions supports the hypothesis that distributions of trailing-edge populations are limited in part by climate effects on reproductive rates.  more » « less
Award ID(s):
1652223 2319642
PAR ID:
10589549
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Ornithology
Volume:
142
ISSN:
0004-8038
Page Range / eLocation ID:
1-14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract PurposeTrailing-edge populations at the low-latitude, receding edge of a shifting range face high extinction risk from climate change unless they are able to track optimal environmental conditions through dispersal. MethodsWe fit dispersal models to the locations of 3165 individually-marked black-throated blue warblers (Setophaga caerulescens) in the southern Appalachian Mountains in North Carolina, USA from 2002 to 2023. Black-throated blue warbler breeding abundance in this population has remained relatively stable at colder and wetter areas at higher elevations but has declined at warmer and drier areas at lower elevations. ResultsMedian dispersal distance of young warblers was 917 m (range 23–3200 m), and dispersal tended to be directed away from warm and dry locations. In contrast, adults exhibited strong site fidelity between breeding seasons and rarely dispersed more than 100 m (range 10–1300 m). Consequently, adult dispersal kernels were much more compact and symmetric than natal dispersal kernels, suggesting adult dispersal is unlikely a driving force of declines in this population. ConclusionOur findings suggest that directional natal dispersal may mitigate fitness costs for trailing-edge populations by allowing individuals to track changing climate and avoid warming conditions at warm-edge range boundaries. 
    more » « less
  2. ABSTRACT Many songbirds begin active incubation after laying their penultimate egg, resulting in synchronous hatching of the clutch except for a last‐hatched individual (“runt”) that hatches with a size deficit and competitive disadvantage to siblings when begging for food. However, climate change may elevate temperatures and cause environmental incubation as eggs are laid, resulting in asynchronous hatching and larger size hierarchies among siblings. Although previous work demonstrated that asynchronous hatching reduces nestling growth and survival relative to synchrony, the physiological mechanisms underlying these effects are unclear. To test the effects of asynchronous hatching on runt growth, survival, physiology, and compensatory growth‐related tradeoffs, we manipulated incubation temperature in nest boxes of European starlings (Sturnus vulgaris) to increase asynchronous hatching and collected nestling morphological measurements and blood samples to assess physiology and development. Independent of heating treatment, runts from asynchronously hatched nests had lower survival than runts from more synchronous nests. Surviving runts from asynchronous nests were smaller and had reduced stress‐induced corticosterone concentrations and reduced circulating glucose compared with runts from synchronous nests. Despite persistent size and energy deficits, runts from asynchronous nests did not have significant deficits in immunity or telomere length when compared with runts from synchronous nests, suggesting no trade‐off between investment in immune development or telomere maintenance with growth. Overall, these results suggest that increased asynchrony due to climate change could reduce clutch survival for altricial songbirds, especially for the smallest chicks in a clutch, and that the negative effects of asynchrony may be driven by persistent energetic deficits. 
    more » « less
  3. IntroductionExposure to elevated temperatures during incubation is known to induce epigenetic changes that are associated with immunological and stress-response differences at a later age. Reports on its effects on the adipose tissue are still scarce. In this experiment, we investigated the effect of embryonic heat conditioning (EHC) on growth, adipose tissue mRNA and global DNA methylation in broiler chicks at day 4 post-hatch. MethodsFertile eggs were divided into two groups: control and EHC. Eggs in the control group were incubated at 37.8°C and 80% relative humidity from day 0 to day 18.5 (E0 to E18.5). The EHC eggs were subjected to an intermittent increase in temperature to 39.5°C and 80% relative humidity from E7 to E16 for 12 h (07:30–19:30) per day. On day 4 post-hatch, control and EHC chicks were subjected to 36°C using three time points: 0 (no heat challenge serving as the control), and 2 and 12 h relative to start of the heat challenge. Fifteen chicks were sampled from each group for every timepoint. Body weight was recorded before euthanasia and subcutaneous adipose tissue was collected. ResultsBody weights were similar in control and EHC groups. Diacylglycerol O-acyltransferase 2 (DGAT2) mRNA was lower in the EHC group at time 0 relative to control. Hormone-sensitive lipase (HSL) mRNA was greater in the EHC than control group at the 0 h timepoint. Heat challenge affected adipose tissue DNA methylation, with methylation highest at 12 h into the heat challenge. DiscussionThese findings highlight the dynamic molecular responses of chicks to heat stress during early post-hatch development and suggest that EHC may affect heat stress responses and adipose tissue development through mechanisms involving lipid remodeling and DNA methylation. 
    more » « less
  4. Incubation is a crucial part of the avian life cycle; eggs must be kept warm enough for embryos to develop. As egg temperatures drop rapidly when not being actively incubated, birds must balance the thermal requirements of their developing offspring with their own energy requirements when deciding to make a feeding trip. Incubation behavior can vary with ambient temperature, and across the breeding cycle. Here, we examine the incubation behavior of black-capped (Poecile atricapillus) and mountain (P. gambeli) chickadees where they live together in the Front Range of the Colorado Rocky Mountains. We deployed iButton temperature monitors in and around chickadee nests to record nest and ambient temperatures during the incubation period. For each deployment, we visually inspected temperature data to determine whether incubation was detected. For each deployment in which incubation was detected we quantified incubation behavior using the incR R package. Across the four nests for which incubation was detected, females (the incubating sex) spent about 85% of the day incubating, and left the nest about 32 times per day for an average of 6.7 minutes. On average, nest temperatures were maintained around 35˚C. 
    more » « less
  5. Abstract Sea turtles are vulnerable to climate change since their reproductive output is influenced by incubating temperatures, with warmer temperatures causing lower hatching success and increased feminization of embryos. Their ability to cope with projected increases in ambient temperatures will depend on their capacity to adapt to shifts in climatic regimes. Here, we assessed the extent to which phenological shifts could mitigate impacts from increases in ambient temperatures (from 1.5 to 3°C in air temperatures and from 1.4 to 2.3°C in sea surface temperatures by 2100 at our sites) on four species of sea turtles, under a “middle of the road” scenario (SSP2‐4.5). Sand temperatures at sea turtle nesting sites are projected to increase from 0.58 to 4.17°C by 2100 and expected shifts in nesting of 26–43 days earlier will not be sufficient to maintain current incubation temperatures at 7 (29%) of our sites, hatching success rates at 10 (42%) of our sites, with current trends in hatchling sex ratio being able to be maintained at half of the sites. We also calculated the phenological shifts that would be required (both backward for an earlier shift in nesting and forward for a later shift) to keep up with present‐day incubation temperatures, hatching success rates, and sex ratios. The required shifts backward in nesting for incubation temperatures ranged from −20 to −191 days, whereas the required shifts forward ranged from +54 to +180 days. However, for half of the sites, no matter the shift the median incubation temperature will always be warmer than the 75th percentile of current ranges. Given that phenological shifts will not be able to ameliorate predicted changes in temperature, hatching success and sex ratio at most sites, turtles may need to use other adaptive responses and/or there is the need to enhance sea turtle resilience to climate warming. 
    more » « less