skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2051110

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kumar, Bimlesh (Ed.)
    Austin, Texas is among the most rapidly urbanizing regions in the U.S., posing challenges to the resilience of its water resources. Geochemical differences between stream water from relatively pristine (rural) and impacted (urban) watersheds indicate several distinct controls on stream water compositions, including extent of urbanization, extent of failure of the city’s municipal water infrastructure, and differences in bedrock composition and permeability. We focus here on the largely unstudied evolution of municipal water once it leaves the infrastructure and enters the natural hydrologic system as groundwater and/or surface water. We use the distinct Sr isotope values (87Sr/86Sr) and other compositional differences between municipal waters, natural stream and spring water, limestone bedrock, and soils as tracers of the sources of and processes by which four Austin-area streams and springs acquire their dissolved constituents. These processes include 1) fluid-mixing between municipal and natural surface water and groundwater, 2) multiple mineral-solution reactions, including dissolution and water-rock interaction (WRI) processes of precipitation, incongruent dissolution, and recrystallization, and 3) varying groundwater residence times. Stream water in two urbanized watersheds have high87Sr/86Sr values and ion compositions close to values for municipal water, whereas stream and spring water in two rural watersheds have compositions close to natural stream water. Urbanized stream water compositions can be accounted for by models of municipal water contributions followed by dissolution of bedrock minerals. By contrast, rural stream water compositions are consistent with a model sequence of dissolution followed by extensive WRI with limestone. The results of this study indicate significant contributions to streams from the municipal infrastructure. We find that the evolution of this municipal water in the natural hydrologic system comprises multiple fluid-mixing processes and mineral-solution reactions, which are influenced by differences in bedrock geology. This composite evolution advances our understanding of the complexities of “Urban Stream Syndrome”. 
    more » « less
    Free, publicly-accessible full text available December 31, 2025
  2. Human activities in urban areas disturb the natural landscape upon which they develop, disrupting pedogenic processes and ultimately limiting the ecosystem services urban soils provide. To better understand the impacts on and resiliency of soils in response to urban development, it is essential to understand the processes by which and degree to which soil physical and chemical properties are altered in urban systems. Here, we apply the source-tracing capabilities of Sr isotopes (87Sr/86Sr) to understand the impacts of urban processes on the composition of soils in eight watersheds in Austin, Texas. We evaluate natural and anthropogenic Sr sources in watersheds spanning a wide range of urbanization, comparing soils by variations in their natural (including mineralogy, thickness, soil type, and watershed) and anthropogenic (including irrigation, soil amendments, and fertilization) characteristics. A strong positive correlation between soil thickness and 87Sr/86Sr is observed among unirrigated soils (R2 = 0.83). In contrast, this relationship is not observed among irrigated soils (R2 = 0.004). 95 % of 42 irrigated soil samples have 87Sr/86Sr values approaching or within the range for municipal supply water. These results indicate soil interaction with municipal water through irrigation and/or water infrastructure leakage. Soils irrigated with municipal water have elevated 87Sr/86Sr values relative to unirrigated soils in seven of eight watersheds. We propose that original soil 87Sr/86Sr values are partially to completely reset by irrigation with municipal water via ion exchange processes. Our results demonstrate that in urban systems, Sr isotopes can serve as an environmental tracer to assess the overprint of urbanization on natural soil characteristics. In the Austin region, resetting of natural soil compositions via urban development is extensive, and the continued expansion of urban areas and irrigation systems may affect the ability of soils to retain nutrients, filter contaminants, and provide other ecosystem services that support environmental resilience. 
    more » « less