skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Increasing behavioral richness and managing structural uncertainty in social-ecological system agent-based models
Responding to the challenges of societal transformation in the face of climate change, efforts to integrate behaviorally rich models of adaptation decision-making into large-scale macroeconomic and Earth system models are growing and agent-based models (ABMs) are an effective tool for doing so. However, behavioral richness in ABMs has been limited to implementations of single decision models for all agents in a simulated population. The main goals of this study were to: 1) implement the ‘building-block processes’ (BBPs) approach for decision model heterogeneity; 2) demonstrate the application of sensitivity and uncertainty analyses to quantify the scope of structural uncertainty produced by alternative decision models under variable price and climate conditions; and 3) apply the Observing System Simulation Experiment (OSSE) approach to validate such a behaviorally rich BBPs model at the level of individual agent decisions. Using an ABM of agricultural producers’ decision-making, we demonstrated that uncertainty in crop and farm management decisions introduced by heterogeneous decision models was equal to and in some instances greater than that due to variable price or precipitation conditions. Unrealistically rapid or stagnant behavioral dynamics were evident in model versions implementing single decision models for all agents. Moreover, interactions among agents with diverse decision models in the same population produced consistently more accurate outcomes and realistic behavioral dynamics. The BBPs framework and accompanying sensitivity and uncertainty analyses demonstrated here offer a path forward for increasing behavioral richness in ABMs, which is key to understanding processes of adaptation central to societal responses to climate change.  more » « less
Award ID(s):
2317819 1856054
PAR ID:
10589567
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Socio-Environmental Systems Modeling
Date Published:
Journal Name:
Socio-Environmental Systems Modelling
Volume:
6
ISSN:
2663-3027
Page Range / eLocation ID:
18749
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The nexus of food, energy, and water systems (FEWS) has become a salient research topic, as well as a pressing societal and policy challenge. Computational modeling is a key tool in addressing these challenges, and FEWS modeling as a subfield is now established. However, social dimensions of FEWS nexus issues, such as individual or social learning, technology adoption decisions, and adaptive behaviors, remain relatively underdeveloped in FEWS modeling and research. Agent-based models (ABMs) have received increasing usage recently in efforts to better represent and integrate human behavior into FEWS research. A systematic review identified 29 articles in which at least two food, energy, or water sectors were explicitly considered with an ABM and/or ABM-coupled modeling approach. Agent decision-making and behavior ranged from reactive to active, motivated by primarily economic objectives to multi-criteria in nature, and implemented with individual-based to highly aggregated entities. However, a significant proportion of models did not contain agent interactions, or did not base agent decision-making on existing behavioral theories. Model design choices imposed by data limitations, structural requirements for coupling with other simulation models, or spatial and/or temporal scales of application resulted in agent representations lacking explicit decision-making processes or social interactions. In contrast, several methodological innovations were also noted, which were catalyzed by the challenges associated with developing multi-scale, cross-sector models. Several avenues for future research with ABMs in FEWS research are suggested based on these findings. The reviewed ABM applications represent progress, yet many opportunities for more behaviorally rich agent-based modeling in the FEWS context remain. 
    more » « less
  2. Beecham, Roger; Long, Jed A.; Smith, Dianna; Zhao, Qunshan; Wise, Sarah (Ed.)
    Agent-based models (ABMs) are powerful tools used for better understanding, predicting, and responding to diseases. ABMs are well-suited to represent human health behaviors, a key driver of disease spread. However, many existing ABMs of infectious respiratory disease spread oversimplify or ignore behavioral aspects due to limited data and the variety of behavioral theories available. Therefore, this study aims to develop and implement a data-driven framework for agent decision-making related to health behaviors in geospatial ABMs of infectious disease spread. The agent decision-making framework uses a logistic regression model expressed in the form of odds ratios to calculate the probability of adopting a behavior. The framework is integrated into a geospatial ABM that simulates the spread of COVID-19 and mask usage among the student population at George Mason University in Fall 2021. The framework leverages odds ratios, which can be derived from surveys or open data, and can be modified to incorporate variables identified by behavioral theories. This advancement will offer the public and decision-makers greater insight into disease transmission, accurate predictions on disease outcomes, and preparation for future infectious disease outbreaks. 
    more » « less
  3. The Colorado River Basin (CRB) supports the water supply for seven states and forty million people in the Western United States (US) and has been suffering an extensive drought for more than two decades. As climate change continues to reshape water resources distribution in the CRB, its impact can differ in intensity and location, resulting in variations in human adaptation behaviors. The feedback from human systems in response to the environmental changes and the associated uncertainty is critical to water resources management, especially for water-stressed basins. This paper investigates how human adaptation affects water scarcity uncertainty in the CRB and highlights the uncertainties in human behavior modeling. Our focus is on agricultural water consumption, as approximately 80% of the water consumption in the CRB is used in agriculture. We adopted a coupled agent-based and water resources modeling approach for exploring human-water system dynamics, in which an agent is a human behavior model that simulates a farmer’s water consumption decisions. We examined uncertainties at the system, agent, and parameter levels through uncertainty, clustering, and sensitivity analyses. The uncertainty analysis results suggest that the CRB water system may experience 13 to 30 years of water shortage during the 2019–2060 simulation period, depending on the paths of farmers’ adaptation. The clustering analysis identified three decision-making classes: bold, prudent, and forward-looking, and quantified the probabilities of an agent belonging to each class. The sensitivity analysis results indicated agents whose decision making models require further investigation and the parameters with the higher uncertainty reduction potentials. By conducting numerical experiments with the coupled model, this paper presents quantitative and qualitative information about farmers’ adaptation, water scarcity uncertainties, and future research directions for improving human behavior modeling. 
    more » « less
  4. We study the problem of modeling a population of agents pursuing unknown goals subject to unknown computational constraints. In standard models of bounded rationality, sub-optimal decision-making is simulated by adding homoscedastic noise to optimal decisions rather than actually simulating constrained inference. In this work, we introduce a latent inference budget model (L-IBM) that models these constraints explicitly, via a latent variable (inferred jointly with a model of agents’ goals) that controls the runtime of an iterative inference algorithm. L-IBMs make it possible to learn agent models using data from diverse populations of suboptimal actors. In three modeling tasks—inferring navigation goals from routes, inferring communicative intents from human utterances, and predicting next moves in human chess games—we show that L-IBMs match or outperforms Boltzmann models of decision-making under uncertainty. Moreover, the inferred inference budgets are themselves meaningful, efficient to compute, and correlated with measures of player skill, partner skill and task difficulty. 
    more » « less
  5. ABSTRACT Agent-based models (ABMs) have become essential tools for simulating complex biological, ecological, and social systems where emergent behaviors arise from the interactions among individual agents. Quantifying uncertainty through global sensitivity analysis is crucial for assessing the robustness and reliability of ABM predictions. However, most global sensitivity methods demand substantial computational resources, making them impractical for highly complex models. Here, we introduce SMoRe GloS (SurrogateModeling forRecapitulatingGlobalSensitivity), a novel, computationally efficient method for performing global sensitivity analysis of ABMs. By leveraging explicitly formulated surrogate models, SMoRe GloS allows for comprehensive parameter space exploration and uncertainty quantification without sacrificing accuracy. We demonstrate our method’s flexibility by applying it to two biological ABMs: a simple 2D cell proliferation assay and a complex 3D vascular tumor growth model. Our results show that SMoRe GloS is compatible with simpler methods like the Morris one-at-a-time method, and more computationally intensive variance-based methods like eFAST. SMoRe GloS accurately recovered global sensitivity indices in each case while achieving substantial speedups, completing analyses in minutes. In contrast, direct implementation of eFAST amounted to several days of CPU time for the complex ABM. Remarkably, our method also estimates sensitivities for ABM parameters representing processes not explicitly included in the surrogate model, further enhancing its utility. By making global sensitivity analysis feasible for computationally expensive models, SMoRe GloS opens up new opportunities for uncertainty quantification in complex systems, allowing for more in depth exploration of model behavior, thereby increasing confidence in model predictions. 
    more » « less